3 research outputs found

    κ΄‘ ν™œμ„± λ‚˜λ…Έμ†Œμž¬λ₯Ό μ΄μš©ν•œ μ΄κ΄‘μž 및 κ΄‘μŒν–₯ μ‹œμŠ€ν…œ

    No full text
    DoctorA variety of nanomaterials have been widely investigated for photonic applications including organic dyes, carbon materials, polymeric nanoparticles, 2D nanomaterials, iron oxide nanoparticels (IONPs), gold nanoparticles (AuNPs), silica nanoparticles (SiNPs) and upconversion nanoparticles (UCNPs). With the unique physical, chemical and optical properties, photonic nanomaterials generate fluorescence, surface plasmon resonance and heat upon absorbing the light. The optical properties of photonic nanomaterials can be tuned easily by changing their particle size and shape due to the quantum confinement effect. During my PhD research, several photonic nanomaterials have been developed for two-photon and photoacoustic (PA) applications including diagnosis, therapy and theranosis. In part I, hyaluronic acid (HA) derivatives were developed for two-photon and PA applications as a target specific delivery carrier to cornea, colon and liver tissues. HA is known to be the component of vitreous humor, skin and extracellular matrix (ECM). HA can bind to HA receptors such as cluster determinant 44 (CD44) and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). First, after labeling with a hydrophilic red fluorescence dye of HiLyte 647, two-photon fluorescence microscopy was carried out to visualize topically administered Flt1 peptide-HA conjugate micelles encapsulating a hydrophobic green dye of 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CFSE) as a model drug. In vivo two-photon microscopy revealed that Flt1 peptide – HA conjugate micelles were absorbed and remained on the corneal epithelia with an increased residence time, facilitating the corneal delivery of CFSE. Furthermore, repeated eye drops of Flt1 peptide - HA conjugate micelles showed comparable therapeutic effect to the subconjunctival injection therapy on the corneal neovascularization. From the results, we could confirm the feasibility of Flt1 peptide – HA conjugate micelles for eye drop treatment of corneal neovascularization. Second, we developed HA – peanut agglutinin (PNA) conjugates for the bioimaging of colon cancer. The HA-PNA conjugates were successfully synthesized by the coupling reaction between aldehyde-modified HA and the N-terminal amine group of PNA. Then, rhodamine B (RhoB) was chemically conjugated onto PNA in HA-PNA conjugates. After intraluminal injection of HA-PNA-RhoB conjugates into tumor-bearing mice, small-sized colon cancers could be effectively visualized by ex vivo imaging with an in vivo imaging system (IVIS) and a two-photon microscope. With these results together, we could confirm the feasibility of HA-PNA-RhoB conjugates as a bioimaging agent for detecting colon cancers. Third, HA – silica nanoparticle (SiNP) conjugates were successfully developed for the bioimaging of liver tissues. The HA-SiNP conjugates were prepared by amide bond formation between diaminohexane (DAH) modified HA and the carboxyl group of SiNP. After intravenous injection of HA-SiNP conjugates into mice, liver tissues could be effectively visualized by in vivo/ex vivo PA imaging. The results confirmed the promising potential of HA-SiNP conjugates as a bioimaging agent to visualize liver tissues. In Part II, carbon dot – chlorin e6 – HA (Cdot-Ce6-HA) conjugate was developed for diagnostic and therapeutic applications. Ce6 has two different effects: generation of radical species with laser irradiation and scavenging of radical species without laser irradiation. Thus, Cdot-Ce6-HA conjugate can be applied as a photodynamic therapy (PDT) agent and a radical scavenging material depending on the treatment of light. First, we investigated a facile transdermal PDT of melanoma skin cancer using Cdot-Ce6-HA conjugates. The Cdot-Ce6-HA conjugate was synthesized by the coupling reaction of diaminohexane modified HA (DAH-HA) with the carboxylic group of Ce6. The singlet oxygen generation of Cdot-Ce6-HA conjugates in aqueous solution was more significant than that of free Ce6. The enhanced transdermal and intracellular delivery of Cdot-Ce6-HA conjugates to B16F10 melanoma cells in tumor model mice were visualized by confocal microscopy and two-photon microscopy. The laser irradiation after topical treatment with Cdot-Ce6-HA conjugates resulted in complete suppression of melanoma skin cancers. The antitumor effect was confirmed by histological analysis with H&E staining and TUNEL assay for tumor apoptosis. Taken together, we could confirm the feasibility of Cdot-Ce6-HA conjugate for transdermal PDT of melanoma skin cancers. Second, we investigated a facile anti-oxidant therapy of retinitis pigmentosa (RP) using Cdot-Ce6-HA conjugates. The radical scavenging effect of Cdot-Ce6-HA was more significant than that of free Ce6 or Cdot-Ce6. The enhanced intracellular delivery of Cdot-Ce6-HA conjugates to ARPE-19 retinal epithelial cells in sodium iodate model was visualized by confocal microscopy. The treatment of Cdot-Ce6-HA conjugates resulted in prevention of retinal degeneration from the oxidative stress. The radical scavenging effect was confirmed by histological analysis with H&E staining and TUNEL assay for the prevention of retinal degeneration. Furthermore, we could confirm the potential of Cdot-Ce6-HA conjugates for the treatment of RP by scavenging the oxygen radicals. In part III, we synthesized biocompatible and near-infrared (NIR) light absorbing N-doped Cdot (N-Cdots) for PA imaging and photothermal therapy (PTT) by carbonizing organic acids with a nitrogen source. The synthesized N-Cdots showed excellent photostability and strong optical absorbance in the NIR region, where tissue and hemoglobin show small optical absorbance. N-Cdots showed high PA signals enough to visualize the inside of live animals and enabled minimally invasive PTT. We performed time-resolved PA imaging of sentinel lymph nodes (SLNs) and assessed the renal clearance after hypodermic injection to investigate the biodegradability and potential application of N-Cdots as a PA imaging contrast agent. The degradation and cytotoxicity tests verified the biodegradability of N-Cdots. Finally, we could effectively treat the skin cancer by the photothermal ablation of N-Cdots after intratumoral injection. The light-absorbing material of N-Cdots might be developed further as a promising agent to enhance the optical contrast in PA imaging and the effect of PTT for the treatment of cancer. All these results of my research for PhD thesis might contribute greatly to the development of photonic nanomaterials for theranostic applications.μœ κΈ°κ΄‘ν•™μ†Œμž¬, νƒ„μ†Œ μ†Œμž¬, κ³ λΆ„μž λ‚˜λ…Έμž…μž, 2차원 λ‚˜λ…Έμ†Œμž¬, μ‚°ν™”μ²  λ‚˜λ…Έμž…μž, 금 λ‚˜λ…Έμž…μž, 싀리카 λ‚˜λ…Έμž…μž, 상ν–₯λ³€ν™˜ λ‚˜λ…Έμž…μž λ“±κ³Ό 같은 λ‹€μ–‘ν•œ λ‚˜λ…Έμ†Œμž¬λ₯Ό μ΄μš©ν•œ 광학적 μ‘μš©μ— λŒ€ν•΄ λ§Žμ€ 연ꡬ가 μ§„ν–‰λ˜κ³  μžˆλ‹€. κ΄‘ ν™œμ„± λ‚˜λ…Έμ†Œμž¬λŠ” λ…νŠΉν•œ 물리적, 화학적, 광학적 μ„±μ§ˆμ„ 가지기 λ•Œλ¬Έμ— 빛을 ν‘μˆ˜ν•˜κ²Œ 되면 ν˜•κ΄‘, ν”ŒλΌμ¦ˆλͺ¬, μ—΄ 등을 λ°œμƒμ‹œν‚¨λ‹€. μ΄λŸ¬ν•œ κ΄‘ ν™œμ„± λ‚˜λ…Έμ†Œμž¬μ˜ 광학적 μ„±μ§ˆμ€ λ‚˜λ…Έμž…μžμ˜ 크기와 λͺ¨μ–‘을 λ³€ν™”μ‹œν‚΄μœΌλ‘œμ¨ μ‘°μ ˆν•  수 μžˆλ‹€. λ³Έ 박사 ν•™μœ„ κ³Όμ •μ—μ„œλŠ” μ—¬λŸ¬ 가지 κ΄‘ ν™œμ„± λ‚˜λ…Έμ†Œμž¬λ₯Ό κ°œλ°œν•˜μ—¬ μ΄κ΄‘μž 및 κ΄‘μŒν–₯ 이미징 κΈ°μˆ μ„ 톡해 μ˜λ£Œμ˜μƒ 및 μΉ˜λ£Œμ— μ μš©ν•˜λŠ” 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. 파트1μ—μ„œλŠ” νžˆμ•Œλ£¨λ‘ μ‚° μœ λ„μ²΄λ₯Ό ν•©μ„±ν•œ ν›„ 각막, λŒ€μž₯, κ°„ 쑰직 ν‘œμ  지ν–₯ 전달 νŠΉμ„±μ„ μ΄κ΄‘μž 및 κ΄‘μŒν–₯ 이미징을 톡해 λΆ„μ„ν•˜λŠ” 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. νžˆμ•Œλ£¨λ‘ μ‚°μ€ 유리 초자체, ν”ΌλΆ€, 세포외 기질 등을 μ΄λ£¨λŠ” ꡬ성 μš”μ†Œμ΄λ‹€. νžˆμ•Œλ£¨λ‘ μ‚°μ€ CD44λ‚˜ LYVE-1κ³Ό 같은 νžˆμ•Œλ£¨λ‘ μ‚° μˆ˜μš©μ²΄μ— κ²°ν•©ν•  수 μžˆλ‹€. 파트1 첫 번째 μ—°κ΅¬λŠ” μ‹ μƒν˜ˆκ΄€ μ–΅μ œ νŽ©νƒ€μ΄λ“œμΈ Flt1 νŽ©νƒ€μ΄λ“œλ₯Ό νžˆμ•Œλ£¨λ‘ μ‚°μ— μ ‘ν•©μ‹œμΌœ μ•ˆκ΅¬ λ‚΄μ—μ„œμ˜ 동ν–₯을 μ΄κ΄‘μž ν˜„λ―Έκ²½μ„ ν†΅ν•˜μ—¬ ν™•μΈν•˜κ³  이λ₯Ό μ μ•ˆ ν˜•νƒœλ‘œ κ°λ§‰μ‹ μƒν˜ˆκ΄€ μΉ˜λ£Œμ— μ‘μš©ν•œ 연ꡬ이닀. λ§ˆμ΄μ…€κ³Ό 같은 λ‚˜λ…Έμž…μž ꡬ쑰λ₯Ό κ°€μ§€λŠ” Flt1 νŽ©νƒ€μ΄λ“œ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체λ₯Ό 각각의 μœ κΈ°μ—Όμƒ‰λ¬Όμ§ˆλ‘œ μ—Όμƒ‰ν•œ λ’€ κ°λ§‰μ—μ„œμ˜ λ¨Έλ¬΄λŠ” μ‹œκ°„ 및 투과 깊이λ₯Ό μ΄κ΄‘μž ν˜„λ―Έκ²½μ„ ν†΅ν•˜μ—¬ λΆ„μ„ν•˜μ˜€λ‹€. 동물 λͺ¨λΈμ—μ„œμ˜ ν‘œμ  지ν–₯ 전달 νŠΉμ„±μ„ κ²€μ¦ν•˜μ˜€κ³  이λ₯Ό λ°”νƒ•μœΌλ‘œ 반볡된 μ μ•ˆ 방법이 ν•œλ²ˆμ˜ μ•ˆκ΅¬ 주사에 λΉ„ν•΄ 각막 μ‹ μƒν˜ˆκ΄€ 치료 νš¨κ³Όκ°€ μžˆλŠ” 것을 κ²€μ¦ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ κ²°κ³Όλ‘œλΆ€ν„° Flt1 νŽ©νƒ€μ΄λ“œ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체 λ§ˆμ΄μ…€μ€ μ μ•ˆ λ°©λ²•μœΌλ‘œ 각막 μ‹ μƒν˜ˆκ΄€ 치료 νš¨κ³Όκ°€ μžˆλŠ” 것을 확인 ν•  수 μžˆμ—ˆλ‹€. 파트1의 두 번째 μ—°κ΅¬λŠ” λŒ€μž₯μ•” ν‘œμ μ§€ν–₯ λ‹¨λ°±μ§ˆμΈ λ•…μ½©λ‹¨λ°±μ§ˆμ„ νžˆμ•Œλ£¨λ‘ μ‚°μ— μ ‘ν•©μ‹œμΌœ λ•…μ½©λ‹¨λ°±μ§ˆ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체λ₯Ό ν•©μ„±ν•˜μ˜€κ³  이λ₯Ό μ΄κ΄‘μž ν˜„λ―Έκ²½μ„ ν†΅ν•˜μ—¬ λŒ€μž₯암에 ν‘œμ  지ν–₯λ˜λŠ”μ§€λ₯Ό ν™•μΈν•˜μ˜€λ‹€. μ ‘ν•©μ²΄μ˜ λ¬Όμ§ˆμ•ˆμ •μ„±μ„ ν™•μΈν•˜μ˜€μœΌλ©° 세포 μˆ˜μ€€μ—μ„œμ˜ λŒ€μž₯μ•” 세포 ν‘œμ  지ν–₯ 전달 νŠΉμ„±μ„ 뢄석 ν•œ ν›„, 동물 μˆ˜μ€€μ—μ„œμ˜ λŒ€μž₯μ•” ν‘œμ  지ν–₯ νŠΉμ„±μ„ λŒ€μž₯μ•” 동물 λͺ¨λΈμ— 항문을 톡해 λ•…μ½©λ‹¨λ°±μ§ˆ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체λ₯Ό μ£Όμž…ν•œ λ’€ μž₯을 μ μΆœν•˜μ—¬ 생체이미징 μ‹œμŠ€ν…œ 및 μ΄κ΄‘μž ν˜„λ―Έκ²½μ„ 톡해 ν™•μΈν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 결과듀을 λ°”νƒ•μœΌλ‘œ λ•…μ½©λ‹¨λ°±μ§ˆμ΄ μ ‘ν•©λœ νžˆμ•Œλ£¨λ‘ μ‚°μ€ λŒ€μž₯μ•” κ²€μΆœμ„ μœ„ν•œ 생체이미징에 쓰일 수 μžˆλŠ” μ‘°μ˜μž¬λ‘œμ„œμ˜ κ°€λŠ₯성을 ν™•μΈν•˜μ˜€λ‹€. 파트1의 μ„Έ 번째 μ—°κ΅¬λŠ” 싀리카 λ‚˜λ…Έμž…μžμ— νžˆμ•Œλ£¨λ‘ μ‚°μ„ μ ‘ν•©μ‹œμΌœ κ°„ 쑰직 이미징 λ¬Όμ§ˆλ‘œμ„œ μ‘μš©ν•˜μ˜€λ‹€. νžˆμ•Œλ£¨λ‘ μ‚°-싀리카 λ‚˜λ…Έμž…μž μ ‘ν•©μ²΄λŠ” 닀이아미노ν—₯산이 μ ‘ν•©λœ νžˆμ•Œλ£¨λ‘ μ‚° μ ‘ν•©μ²΄μ˜ μ•„λ―Όκ·Έλ£Ήκ³Ό 싀리카 λ‚˜λ…Έμž…μžμ˜ 카볡싀 κ·Έλ£Ήκ°„μ˜ μ•„λ§ˆμ΄λ“œ κ·Έλ£Ή ν˜•μ„± 과정을 톡해 ν•©μ„± λ˜μ—ˆλ‹€. νžˆμ•Œλ£¨λ‘ μ‚°-싀리카 λ‚˜λ…Έμž…μž 접합체λ₯Ό μ •λ§₯ μ£Όμ‚¬ν•œ ν›„ κ΄‘μŒν–₯ 이미징을 톡해 κ°„ 쑰직이 이미징 λ˜λŠ”μ§€λ₯Ό ν™•μΈν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 결과듀을 λ°”νƒ•μœΌλ‘œ νžˆμ•Œλ£¨λ‘ μ‚°-싀리카 λ‚˜λ…Έμž…μž μ ‘ν•©μ²΄λŠ” κ°„ 쑰직을 μ˜μƒν™” ν•˜κΈ°μœ„ν•œ 생체이미징 μ‘°μ˜μž¬λ‘œμ„œμ˜ κ°€λŠ₯성을 ν™•μΈν•˜μ˜€λ‹€. 파트2μ—μ„œλŠ” νƒ„μ†Œλ‚˜λ…Έμž…μž-κ΄‘κ°μ‘μ œ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체λ₯Ό ν•©μ„±ν•˜μ—¬ λΉ›μ˜ μ‘°μ‚¬μœ λ¬΄μ— 따라 ν”ΌλΆ€μ•” 치료λ₯Ό μœ„ν•œ κ΄‘ 동λ ₯ν•™ 치료 μ‹œμŠ€ν…œ 및 λ§λ§‰μƒ‰μ†Œ 변성증 치료λ₯Ό μœ„ν•œ ν™œμ„±μ‚°μ†Œ μ–΅μ œ μ‹œμŠ€ν…œμœΌλ‘œ κ°œλ°œν•˜κΈ° μœ„ν•œ 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. 빛에 λ°˜μ‘ν•˜μ—¬ μ•” μ£Όλ³€ μ‚°μ†Œλ₯Ό μ‚Όμ€‘ν•­μ—μ„œ μΌμ€‘ν•­μœΌλ‘œ λ³€ν™˜μ‹œμΌœ μ•”μ„Έν¬μ˜ μžκ°€κ΄΄μ‚¬λ₯Ό μΌμœΌν‚€λŠ” κ΄‘κ°μ‘μ œλ₯Ό 물에 λ…Ήκ²Œ ν•˜κΈ° μœ„ν•΄ νƒ„μ†Œλ‚˜λ…Έμž…μžλ₯Ό μ ‘ν•©μ‹œμΌ°μœΌλ©° κ²½ν”Ό 전달 λ˜λŠ” μ•ˆκ΅¬ 망막 전달을 μœ„ν•΄ νžˆμ•Œλ£¨λ‘ μ‚°μ„ μ ‘ν•©μ‹œμΌ°λ‹€. 파트2의 첫 번째 μ—°κ΅¬λŠ” ν”ΌλΆ€μ•” 치료λ₯Ό μœ„ν•΄ 빛을 μ΄μš©ν•œ 광동λ ₯ν•™ 경피전달 μ‹œμŠ€ν…œ κ°œλ°œμ΄λ‹€. 일쀑항 μ‚°μ†Œ λ°œμƒ 효율이 κ΄‘κ°μ‘μ œ 단독 λ¬Όμ§ˆμ— λΉ„ν•΄ 높은 것을 ν™•μΈν•˜μ˜€λ‹€. 곡초점 ν˜„λ―Έκ²½κ³Ό μ΄κ΄‘μž ν˜„λ―Έκ²½μ„ ν†΅ν•˜μ—¬ νƒ„μ†Œλ‚˜λ…Έμž…μž-κ΄‘κ°μ‘μ œ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체가 세포 λ‚΄ μ„­μ·¨ 및 κ²½ν”Ό 전달 효율이 높아진 것을 이미징 ν•˜μ˜€λ‹€. λ˜ν•œ 피뢀암이 생긴 동물λͺ¨λΈμ„ μ΄μš©ν•˜μ—¬ ν”ΌλΆ€μ•” 세포 μœ„μ˜ 피뢀에 λ¬Όμ§ˆμ„ λ°”λ₯Έ λ’€ λ ˆμ΄μ €λ₯Ό μ‘°μ‚¬ν•œ 경우 암이 μ™„λ²½νžˆ 제거 λ˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 결과듀을 λ°”νƒ•μœΌλ‘œ νƒ„μ†Œλ‚˜λ…Έμž…μž-κ΄‘κ°μ‘μ œ-νžˆμ•Œλ£¨λ‘ μ‚° μ ‘ν•©μ²΄λŠ” λ©œλΌλ…Έλ§ˆ ν”ΌλΆ€μ•” 치료λ₯Ό μœ„ν•œ 경피전달 광동λ ₯ν•™ μΉ˜λ£Œμ œλ‘œμ„œμ˜ κ°€λŠ₯성을 ν™•μΈν•˜μ˜€λ‹€. 파트2의 두 번째 μ—°κ΅¬λŠ” ν™œμ„±μ‚°μ†Œμ— μ˜ν•œ 망막 ν‘œν”Ό μ„Έν¬μ˜ 퇴화λ₯Ό 막기 μœ„ν•΄ ν™œμ„±μ‚°μ†Œλ₯Ό μ–΅μ œν•΄μ£ΌλŠ” λ¬Όμ§ˆλ‘œμ„œ νƒ„μ†Œλ‚˜λ…Έμž…μž-κ΄‘κ°μ‘μ œ-νžˆμ•Œλ£¨λ‘ μ‚° 접합체λ₯Ό μ—°κ΅¬ν•˜μ˜€λ‹€. κ΄‘κ°μ‘μ œλŠ” 빛이 μ—†λŠ” ν™˜κ²½μ—μ„œλŠ” ν™œμ„±μ‚°μ†Œλ₯Ό λ§Œλ“€μ–΄μ£ΌλŠ” 광동λ ₯ν•™ λ©”μ»€λ‹ˆμ¦˜ λ³΄λ‹€λŠ” ν™œμ„±μ‚°μ†Œλ₯Ό μ–΅μ œν•˜λŠ” ν™œμ„±μ‚°μ†Œ μ–΅μ œ λ©”μ»€λ‹ˆμ¦˜μ΄ μž‘μš©ν•˜λŠ” κ²ƒμœΌλ‘œ μ—°κ΅¬λ˜κ³  μžˆλ‹€. 이λ₯Ό 망막 세포λ₯Ό μ΄μš©ν•œ 세포 μˆ˜μ€€μ—μ„œ ν‘œμ  지ν–₯ λ˜λŠ”μ§€, μ‹€μ œ ν™œμ„±μ‚°μ†Œ μ–΅μ œ 효율이 μžˆλŠ”μ§€λ₯Ό ν™•μΈν•˜μ˜€μœΌλ©° λž«μ„ μ΄μš©ν•œ 동물 μˆ˜μ€€μ—μ„œλŠ” μ‹€μ œ 망막세포가 ν‡΄ν™”λ˜λŠ” 것을 λ§‰μ•„μ£ΌλŠ”μ§€λ₯Ό 쑰직 검사λ₯Ό ν†΅ν•˜μ—¬ ν™•μΈν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό νƒ„μ†Œλ‚˜λ…Έμž…μž-κ΄‘κ°μ‘μ œ-νžˆμ•Œλ£¨λ‘ μ‚° μœ λ„μ²΄λ₯Ό λ§λ§‰μƒ‰μ†Œ 변성증 치료λ₯Ό μœ„ν•œ ν™œμ„±μ‚°μ†Œ μ–΅μ œ 치료제의 κ°€λŠ₯성을 ν™•μΈν•˜μ˜€λ‹€. 파트3μ—μ„œλŠ” UV μ˜μ—­λŒ€μ—μ„œ 빛이 λ‚˜μ˜€λŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ§„ νƒ„μ†Œλ‚˜λ…Έμž…μžλ₯Ό μ§ˆμ†Œ 도핑을 μ΄μš©ν•˜μ—¬ 근적외선 μ˜μ—­μ—μ„œ 빛을 ν‘μˆ˜ν•˜λ„λ‘ λ§Œλ“€μ—ˆμœΌλ©° ν˜•κ΄‘ λ³΄λ‹€λŠ” 열을 λ°œμƒμ‹œν‚€λ„λ‘ ν•©μ„±ν•˜μ˜€λ‹€. 근적외선 μ˜μ—­μ—μ„œλŠ” μ‘°μ§μ΄λ‚˜ ν—€λͺ¨κΈ€λ‘œλΉˆμ€ 빛을 적게 ν‘μˆ˜ν•œλ‹€. μ§ˆμ†Œκ°€ λ„ν•‘λœ νƒ„μ†Œλ‚˜λ…Έμž…μžλŠ” κ΄‘μŒν–₯ μ„ΈκΈ°κ°€ μ»€μ„œ 생체 λ‚΄λΆ€λ₯Ό μ΄λ―Έμ§•ν•˜κΈ°μ— μΆ©λΆ„ν•˜λ‹€. μ§ˆμ†Œκ°€ λ„ν•‘λœ νƒ„μ†Œλ‚˜λ…Έμž…μžλŠ” 흑광, λ°œμ—΄ 및 κ΄‘μŒν–₯ μ‹ ν˜Έ μΈ‘μ • μ‹€ν—˜μ„ 톡해 근적외선 μ˜μ—­μ—μ„œ 빛을 ν‘μˆ˜ν•˜κ³  열을 λ°œμƒμ‹œν‚€λ©° 농도가 진해짐에 따라 κ΄‘μŒν–₯ μ‹ ν˜Έκ°€ 많이 μΈ‘μ •λ˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 이λ₯Ό μ‘μš©ν•˜μ—¬ λ¦Όν”„λ…Έλ“œ, μž₯을 이미징 ν•˜μ˜€μœΌλ©° 였쀌으둜 λ°°μΆœλ˜λŠ” 것을 ν™•μΈν•˜μ˜€κ³  μ•” λͺ¨λΈμ—μ„œ 광열을 ν†΅ν•œ 치료 효과λ₯Ό 확인할 수 μžˆμ—ˆλ‹€. μ§ˆμ†Œκ°€ λ„ν•‘λœ νƒ„μ†Œλ‚˜λ…Έμž…μžλŠ” κ΄‘μŒν–₯ μ΄λ―Έμ§•μ—μ„œμ˜ 광학적 λŒ€λΉ„νš¨κ³Όλ₯Ό 높이고 μ•”μΉ˜λ£Œλ₯Ό μœ„ν•œ κ΄‘μ—΄μΉ˜λ£Œ 효과λ₯Ό λ†’μ΄λŠ”λ° 이용될 수 μžˆλŠ” λ¬Όμ§ˆμž„μ„ ν™•μΈν•˜μ˜€λ‹€. λ³Έ λ°•μ‚¬ν•™μœ„ κ³Όμ • λ™μ•ˆ κ΄‘ ν™œμ„± λ‚˜λ…Έμ†Œμž¬λ₯Ό μ΄μš©ν•œ μ΄κ΄‘μž 및 κ΄‘μŒν–₯ μ‹œμŠ€ν…œμ— λŒ€ν•œ 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ—¬ λ‹€μ–‘ν•œ μ˜λ£Œμ˜μƒ 및 치료 μ‹œμŠ€ν…œμœΌλ‘œ κ°œλ°œν•˜λŠ” 연ꡬλ₯Ό μ„±κ³΅μ μœΌλ‘œ μˆ˜ν–‰ν•˜μ˜€λ‹€

    Hyaluronate Modified Upconversion Nanoparticles for Near Infrared Light-triggered on-off Tattoo Systems

    No full text
    An in vivo on-off tattoo system was developed using upconversion nanoparticles conjugated with hyaluronate (HA-UCNPs). Two-photon microscopy clearly visualized the transdermal delivery of HA-UCNPs into the deep skin tissue. Upon near-infrared light irradiation, invisible HA-UCNPs in the skin were visualized showing the feasibility as a new on-off tattoo system.111Nsciescopu

    Hyaluronate and Its Derivatives for Customized Biomedical Applications

    No full text
    Since hyaluronate (HA) was firstly isolated from the vitreous of bovine eyes in 1934, HA has been widely investigated for various biomedical applications. As a naturally-occurring polysaccharide, HA has been used for joint lubrication and ocular treatment in its intact form due to the excellent biocompatibility, viscoelasticity, biodegradability, and hygroscopic properties. HA can be easily functionalized via the chemical modification of its carboxyl and hydroxyl groups. Recently, a variety of biological functions of HA have been explored and a number of customized applications have been investigated taking advantages of the interaction between HA and biological tissues. HA has been used for drug delivery to enhance the blood circulation time of drugs with target-specificity to HA receptors in the body. HA has been also used to prepare tissue engineering hydrogel scaffolds for the spatiotemporal control of encapsulated cells. In this review, we describe the key biological functions of HA in the body in terms of its structure, physical properties, biodistribution and interaction with HA receptors. After that, we describe unique advantages that allow HA to be applied in various biomedical fields. Finally, we report the conventional and newly emerging applications of HA and its derivatives under commercial development stages.1114sciescopu
    corecore