41 research outputs found

    ์žฅ์• ๋ฌผ๋ฌธ์ œ์˜ ์ •์น™์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2019. 2. ์ด๊ธฐ์•”.์ด ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์žฅ์• ๋ฌผ ๋ฌธ์ œ์˜ ํ•ด์˜ ์ •์น™์„ฑ๊ณผ ์ž์œ ๊ฒฝ๊ณ„์˜ ์ •์น™์„ฑ์„ ๋‹ค๋ฃฌ๋‹ค. ํŠน๋ณ„ํžˆ, ๋น„ ๋ณผ๋ก ์™„์ „ ๋น„์„ ํ˜•์—ฐ์‚ฐ์ž์˜ ์žฅ์• ๋ฌผ๋ฌธ์ œ์˜ ์ž์œ ๊ฒฝ๊ณ„์˜ ์ •์น™์„ฑ๊ณผ ์ด์ค‘์žฅ์• ๋ฌผ ๋ฌธ์ œ์˜ ํ•ด์˜ ์ •์น™์„ฑ๊ณผ ์ž์œ ๊ฒฝ๊ณ„์˜ ์ •์น™์„ฑ์„ ๋‹ค๋ฃฌ๋‹ค. ๋น„ ๋ณผ๋ก ์™„์ „ ๋น„์„ ํ˜•์—ฐ์‚ฐ์ž์˜ ์žฅ์• ๋ฌผ๋ฌธ์ œ์˜ ์ž์œ ๊ฒฝ๊ณ„์˜ ์ •์น™์„ฑ์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด์„œ, F(D^2u)=0์˜ ํ•ด์˜ ๋‚ด๋ถ€ C^{2,\alpha} ์ •์น™์„ฑ์„ ๋ณด์˜€๋‹ค. ๋ผํ”Œ๋ผ์‹œ์•ˆ์˜ ์ด์ค‘์žฅ์• ๋ฌผ ๋ฌธ์ œ์—์„œ๋Š” ACF ๋‹จ์กฐ๊ณต์‹๊ณผ ๋ฐ”์ด์Šค ๋‹จ์กฐ๊ณต์‹์„ ์ด์šฉํ•˜์˜€๋‹ค. ์ด ๋‹จ์กฐ๊ณต์‹์€ ์™„์ „ ๋น„์„ ํ˜•์—ฐ์‚ฐ์ž์˜ ์ด์ค‘ ์žฅ์• ๋ฌผ ๋ฌธ์ œ์—๋Š” ์ ์šฉ ๋  ์ˆ˜ ์—†๋‹ค. ๊ทธ๋ž˜์„œ, ๋ฐ˜๊ณต๊ฐ„ ํ•จ์ˆ˜ \psi=c(x_n^+)^2๋ฅผ ์œ„ ์žฅ์• ๋ฌผ๋กœ ๊ฐ–๋Š” ๋Œ€์—ญํ•ด u์— ๋Œ€ํ•ด e๊ฐ€ e_n๊ณผ ์ˆ˜์ง์ธ ๋ฐฉํ–ฅ์ผ ๋•Œ, \partial_e u/x_n์ด ์œ ํ•œํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์ด์šฉํ•˜์˜€๋‹ค.In this dissertation, we consider the regularity of solutions and the regularity of the free boundary of the obstacle problems. Specifically, we study the regularity of the free boundary of a non-convex fully nonlinear operator and the regularity of solutions and the free boundary of the double obstacle problem. In order to prove the regularity of the free boundary of a non-convex fully nonlinear operator, we have the interior C^{2,\alpha} regularity of the solution of the Dirichlet problem for the non-convex fully nonlinear operator. In the double obstacle problem for Laplacian, we use the ACF monotonicity formula and the Weiss' monotonicity formula. The monotonicity formulas are not applicable for the double obstacle problem for fully nonlinear operator. Hence, we exploit the fact that the term \partial_e u/x_n is finite, where e is a direction orthogonal to e_n, for the global solution u with the half space function type upper obstacle \psi=c(x_n^+)^2.1 Introduction 1 1.1 Introduction of Obstacle Problems . . . . . . . . . . . . . . . 1 1.2 A Preview of Dissertation . . . . . . . . . . . . . . . . . . . . 2 2 Preliminaries 5 2.1 Fully Nonlinear Operator . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Viscosity Solutions . . . . . . . . . . . . . . . . . . . 5 2.1.2 Regularity of the Solution of the Fully Nonlinear Operator 6 2.2 Rescaling, Blowup and Thickness assumption. . . . . . . . . . 8 3 Obstacle Problem for a Non-convex Fully Nonlinear Operator 10 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 The Conditions on Fully Nonlinear Operator and Level Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.4 Main Theorems . . . . . . . . . . . . . . . . . . . . . 16 3.2 C^{2,\alpha} Regularity of Solutions for F(D^2u) = 0 . . . . . 18 3.3 Regularity of the Free Boundary . . . . . . . . . . . . . . . . 23 3.3.1 General Properties . . . . . . . . . . . . . . . . . . . 23 3.3.2 Convexity of Global Solutions u\in P_\infty(M) . . . . . . . 26 3.3.3 Directional Monotonicity . . . . . . . . . . . . . . . . 37 3.3.4 Proof of Theorem 3.1.1 and Corollary 3.1.2 . . . . . . 40 4 Double Obstacle Problem (Linear Case) 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 44 4.1.3 Main Results . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Standard Results . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.1 Optimal regularity . . . . . . . . . . . . . . . . . . . 46 4.2.2 Non-degeneracy . . . . . . . . . . . . . . . . . . . . 47 4.3 Properties of Global Solutions . . . . . . . . . . . . . . . . . 49 4.3.1 Dimensionality Reduction and Positivity of Global Solutions with the Upper Obstacle \psi = \frac{a}{2}(x^+_1)^2 . . . . . . 49 4.3.2 Homogeneity of Blowup and Shrink-down of Global Solutions with the Upper Obstacle \psi = \frac{a}{2}(x^+_1)^2 . . . . . 54 4.4 Directional Monotonicity . . . . . . . . . . . . . . . . . . . . 57 4.5 Classification of Blowups . . . . . . . . . . . . . . . . . . . . 61 4.6 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . 62 5 Double Obstacle Problem (Fully Nonlinear Case) 65 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Reduction of (FB) . . . . . . . . . . . . . . . . . . . 68 5.1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.3 Conditions on F = F(M, x) . . . . . . . . . . . . . . 69 5.1.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.5 Main Theorems . . . . . . . . . . . . . . . . . . . . . 70 5.2 Existence, Uniqueness and Optimal Regularity . . . . . . . . 72 5.2.1 Existence, uniqueness of W^{2,p} solution . . . . . . . . . 72 5.2.2 Optimal Regularity . . . . . . . . . . . . . . . . . . . 74 5.3 Regularity of the Free Boundary . . . . . . . . . . . . . . . . 77 5.3.1 Non-degeneracy . . . . . . . . . . . . . . . . . . . . 77 5.3.2 Classification of Global Solutions . . . . . . . . . . . 78 5.3.3 Directional Monotonicity and proof of Theorem 5.1.2 . 80Docto

    Properties of obstacle problem and free boundary problem

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2014. 8. ์ด๊ธฐ์•”.This paper is a paper which is written based on the contents of [1] and introduction of obstacle problem for nonlinear second-order parabolic operator. In chapter 1, we introduce classical obstacle problem and we deal with existence, uniqueness and C11 regularity of solution of the problem. In chapter 2, we show C11 regularity of solution of Obstacle-type problem. In chapter 3, we prove some elementary properties of free boundary. In chapter 4, We reference [2] to show the continuity of solution of obstacle problem for nonlinear second-order parabolic operator. Key1 The classical obstacle problem 1 1.1 The obstacle problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Existense and uniqueness of the solution of the obstacle problems . . . . . . . 4 1.3 W2p regularity of the solution of the classical obstacle problem . . . . . . . . . 6 1.4 C11 regularity of the solution of the classical obstacle problem . . . . . . . . . 8 2 Optimal regularity of solutions of obstacle problems 10 2.1 Model problems ABC and OT1 ?? OT2 . . . . . . . . . . . . . . . . . . . . . 10 2.2 ACF monotonicity formula and generalizations . . . . . . . . . . . . . . . . . 11 2.3 Optimal regularity in OT1 ?? OT2 . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Preliminary analysis of the free boundary 20 3.1 Nondegeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Lebesgue and Hausdo measures of the free boundary . . . . . . . . . . . . . 22 3.3 Classes of solutions, rescalings, and blowups . . . . . . . . . . . . . . . . . . 26 4 Obstacle problem for nonlinear second-order parabolic operator 29 4.1 Viscosity solution of parabolic equations . . . . . . . . . . . . . . . . . . . . . 29 4.2 The existence and the continuity theory . . . . . . . . . . . . . . . . . . . . . 30Maste

    Lanthanum Strontium Cobalt Ferrite Oxide Series electrode material for Solid Oxide fuel cell and Manufacturing Method thereof

    No full text
    ๋ณธ ๋ฐœ๋ช…์€ ๊ณ ์ฒด์‚ฐํ™”๋ฌผ ์—ฐ๋ฃŒ์ „์ง€์— ๊ด€ํ•œ ๊ฒƒ์œผ๋กœ, ์ŠคํŠธ๋ก ํŠฌ, ์ฝ”๋ฐœํŠธ ์กฐ์„ฑ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ์‚ฐ์†Œ ์ด์˜จ ์ „๋„์„ฑ ๋ฐ ์ „์ž ์ „๋„์„ฑ์ด ํ–ฅ์ƒ๋œ ๊ณ ์ฒด์‚ฐํ™”๋ฌผ ์—ฐ๋ฃŒ์ „์ง€์˜ ๊ณต๊ธฐ๊ทน์šฉ ๋‚˜๋…ธ ์ž…์ž LSCF ๊ณ„ ๊ณ ์ฒด์‚ฐํ™”๋ฌผ ์—ฐ๋ฃŒ์ „์ง€ ์ „๊ทน ์†Œ์žฌ ๋ฐ ๊ทธ ์ œ์กฐ ๋ฐฉ๋ฒ•์— ๊ด€ํ•œ ๊ฒƒ์œผ๋กœ์„œ, ์ƒ๊ธฐ LSCF ๊ณ„ ๊ณ ์ฒด์‚ฐํ™”๋ฌผ ์—ฐ๋ฃŒ์ „์ง€ ์ „๊ทน ์†Œ์žฌ๋Š”, La1-xSrxCo1-yFeyO3-ฮด๋กœ ํ‘œํ˜„๋˜๋ฉฐ, 0.78 โ‰ค x โ‰ค 0.82์ด๊ณ , 0.18 โ‰ค y โ‰ค 0.22 ์ด๋ฉฐ, 0 โ‰ค ฮด โ‰ค 1์ธ ๋ž€ํƒ„ ์ŠคํŠธ๋ก ํŠฌ ์ฝ”๋ฐœํŠธ ์ฒ  ๋ณตํ•ฉ์‚ฐํ™”๋ฌผ์ธ ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค

    ๊ทœ์น™(Regel)๊ณผ ์›๋ฆฌ(Prinzip)๋กœ์„œ์˜ ๊ธฐ๋ณธ๊ถŒ

    No full text
    ๊ธฐ๋ณธ๊ถŒ์˜ ์˜์—ญ์—์„œ ่ฆๅ‰‡๊ณผ ๅŽŸ็†์˜ ๋ฒ”์ฃผ(Kategorien)์˜ ๊ตฌ๋ถ„์ด ์—†์ด๋Š” ์ ์ ˆํ•œ ๅŸบๆœฌๆฌŠๅˆถ้™็†่ซ–(Schrankentheorie)์ด๋‚˜ ๋งŒ์กฑํ•  ๋งŒํ•œ ๅŸบๆœฌๆฌŠ่ก็ช็†่ซ–(Kollisionslehre) ๊ทธ๋ฆฌ๊ณ  ๋ฒ•์ฒด๊ณ„์— ์žˆ์–ด์„œ ๊ธฐ๋ณธ๊ถŒ์˜ ์—ญํ• ์— ๋Œ€ํ•œ ์ถฉ๋ถ„ํ•œ ์ด๋ก ์ด ์กด์žฌํ•  ์ˆ˜ ์—†๋‹ค. ๋” ๋‚˜์•„๊ฐ€์„œ ๊ธฐ๋ณธ๊ถŒ์„ ๊ทœ์น™๊ณผ ์›๋ฆฌ๋กœ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ฒƒ์€ ๊ธฐ๋ณธ๊ถŒ์˜ ์˜์—ญ์— ์žˆ์–ด์„œ ๅˆ็†ๆ€ง(Rationalitรคt)์˜ ์ ์šฉ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ•œ๊ณ„์˜ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๋Œ€๋‹ต์˜ ์ถœ๋ฐœ์ ์„ ์ด๋ฃจ๊ณ  ์žˆ๋‹ค. ๋™์‹œ์— ์ด๊ฒƒ์€ ๋กœ๋ฒ„ํŠธ ์•Œ๋ ‰์‹œ(Robert Alexy)๊ฐ€ ์‹œ๋„ํ•œ ๊ธฐ๋ณธ๊ถŒ์˜ ๊ทœ์น™(Regeln)๊ณผ ์›๋ฆฌ(Prinzipien)์—๋กœ์˜ ๋ฒ”์ฃผ์  ๊ตฌ๋ถ„์— ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š” ์š”๊ตฌ์™€ ๊ธฐ๋Œ€๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์•Œ๋ ‰์‹œ์˜ ์ €์ž‘์ธ ๊ธฐ๋ณธ๊ถŒ์˜ ์ด๋ก (Theorie der Grundrechte)์˜ ์ œ2ํŒ์ด ์ด๋ฏธ ์ถœ๊ฐ„๋˜์—ˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ 1984๋…„ ๋‹น์‹œ Kiel๋Œ€ํ•™์˜ ๊ฐ•์‚ฌ์˜€๋˜ ๊ทธ์˜ ๋…ผ๋ฌธ์ด ๋ฐœ๊ฐ„๋œ ์ดํ›„ ์ฒด๊ณ„ํ™”์— ๋Œ€ํ•œ ๊ทธ์˜ ์‹œ๋„์— ์–ด๋– ํ•œ ์œ ๋ช…์„ธ๊ฐ€ ๋ถ™๊ฒŒ ๋˜์—ˆ๋Š”๊ฐ€ ํ•˜๋Š” ๊ฒƒ์„ ๋ช…๋ฐฑํžˆ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด๋ฆฌํ•˜์—ฌ ๊ทธ ์‚ฌ์ด์— ์•Œ๋ ‰์‹œ์˜ ์ด๋ก ๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์„ ๊ฐ€์ง€๋Š” ์—ฐ๊ตฌ์ž๋“ค์˜ ๋ฒ”์œ„๋Š” ํ—ค์•„๋ฆด ์ˆ˜ ์—†์„ ์ •๋„๋กœ ๋งŽ์•„์กŒ๋‹ค. ๊ทธ ์ค‘ ๊ฐ€์žฅ ๋งŽ์ด ์ธ์šฉ๋˜๋Š” ๊ฒƒ์€ ๊ทœ์น™๊ณผ ์›๋ฆฌ์—๋กœ์˜ ๊ตฌ์กฐ์ด๋ก ์ ์ธ ๊ตฌ๋ถ„(strukturtheoretische Unterscheidung)์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ์ด์ œ ๋” ์ด์ƒ ์ƒˆ๋กœ์šด ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ด๋Ÿฌํ•œ ๊ทœ์น™๊ณผ ์›๋ฆฌ์˜ ๊ตฌ๋ถ„์˜ ๋ฌธ์ œ๋Š” ๋ฐ”๋กœ ๊ธฐ๋ณธ๊ถŒ์ด๋ก ์˜ ์‹œ๋ฐœ์ (Ausgangspunkt)์ธ ๋™์‹œ์— ์ค‘์‹ฌ์ (Mittelpunkt)์— ํ•ด๋‹นํ•œ๋‹ค
    corecore