27 research outputs found

    The Effect of Overt/Covert Unsuccessful Retrieval upon Subsequent Learning

    No full text
    정닡을 맞히기 μ–΄λ €μš΄ 문제λ₯Ό μ œμ‹œν•˜μ—¬ ν‹€λ¦° μΈμΆœμ„ μœ λ„ν•˜λŠ” μ‚¬μ „μ‹œν—˜(pretesting) 연ꡬ듀은, ν‹€λ¦° 인좜이 ν•™μŠ΅μ„ μ΄‰μ§„ν•˜λŠ” κ²°κ³Όλ₯Ό 보여주고 μžˆλ‹€. ν•˜μ§€λ§Œ ν‹€λ¦° 인좜 쀑 μ˜€λ‹΅μ„ μ‚°μΆœν•˜λŠ” 것이 ν•™μŠ΅μ— μ–΄λ– ν•œ 영ν–₯을 λ―ΈμΉ˜λŠ”μ§€μ— λŒ€ν•˜μ—¬ 보고된 결과듀은 μΌκ΄€λ˜μ§€ μ•Šλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” λ¨Όμ € μ˜€λ‹΅ κ°œμˆ˜μ™€ 탐색 μ‹œκ°„μ˜ 체계적 변화에 λ”°λ₯Έ ν•™μŠ΅ 효과 차이λ₯Ό μ•Œμ•„λ³΄μ•˜λ‹€. μ‹€ν—˜ 1, 2μ—μ„œλŠ” μ°Έκ°€μžμ˜ μ˜€λ‹΅ λ°˜μ‘μˆ˜λ₯Ό 1κ°œμ™€ 3개둜 λ‹€λ₯΄κ²Œ λ³€ν™”μ‹œμΌ°λŠ”λ° μ˜€λ‹΅ μ‚°μΆœ 증가에 λ”°λ₯Έ μˆ˜ν–‰ 차이가 λ‚˜νƒ€λ‚˜μ§€ μ•Šμ•˜λ‹€. κ·ΈλŸ¬λ‚˜ μ°Έκ°€μžμ—κ²Œ 내적 인좜 즉, μ˜€λ‹΅μ„ μ‚°μΆœν•˜μ§€ μ•Šκ³  사전 λ¬Έμ œμ™€ κ΄€λ ¨λœ 정보λ₯Ό νƒμƒ‰λ§Œ ν•˜λ„λ‘ μ§€μ‹œν•œ μ‹€ν—˜ 3, 4μ—μ„œλŠ” 탐색을 많이 ν• μˆ˜λ‘ μˆ˜ν–‰λ„ ν•¨κ»˜ μ¦κ°€ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” λ˜ν•œ κΈ°μ‘΄ 연ꡬ듀보닀 μ§€μ—°μ‹œκ°„μ΄ κΈ΄ κ²½μš°μ—λ„ μ‚¬μ „μ‹œν—˜ νš¨κ³Όκ°€ λ‚˜νƒ€λ‚˜λŠ”μ§€ μ•Œμ•„λ³΄μ•˜λŠ”λ°, 내적 νƒμƒ‰λ§Œ ν•˜λŠ” 경우 ν•™μŠ΅ νš¨κ³Όκ°€ 일주일 뒀에도 ν™•μΈλ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜ μ™Έμ μœΌλ‘œ μ˜€λ‹΅μ„ μ‚°μΆœν•œ 경우 μ¦‰μ‹œκ²€μ‚¬μ—μ„œ λ‚˜νƒ€λ‚¬λ˜ νš¨κ³Όκ°€ 일주일 ν›„ μ§€μ—°κ²€μ‚¬μ—μ„œλŠ” μ‚¬λΌμ‘Œλ‹€. μ΄λŸ¬ν•œ 결과듀은 μ‚¬μ „μ‹œν—˜μ—μ„œ κ΄€λ ¨λœ 정보λ₯Ό λŠ₯λ™μ μœΌλ‘œ νƒμƒ‰ν•˜λŠ” 것이 ν•™μŠ΅μ„ μ΄‰μ§„ν•œλ‹€λŠ” 탐색 집합 이둠(Grimaldi & Karpick, 2012)을 μ§€μ§€ν•˜λŠ” λ™μ‹œμ—, μ˜€λ‹΅μ„ 직접 μ‚°μΆœν•˜λ©΄ μ§€μ—°κ²€μ‚¬μ—μ„œ μ •λ‹΅κ³Ό 인좜 κ²½μŸμ„ 일으켜 ν•™μŠ΅μ„ λ°©ν•΄ν•  수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€.The pretesting effect refers to the enhancement of learning due to unsuccessful retrieval upon being asked a question that is not easily answered, However, the results of research on the effect of overt retrieval on learning, have not been consistent. Therefore, the present study sought to clarify such confusion. We examined whether memory enhancement is affected by the number of wrong answers generated by the examinees and by the duration of retrieval. Four experiments were carried out with college students as participants. In Experiments 1 and 2, we manipulated the number of unsuccessful retrievals to either 1 or 3, and observed that there was no difference in performance. In Experiments 3 and 4, participants were asked to think of possible answers without overt responses. The results showed that the performance was better for those who were asked to think of more answers. The present study also examined whether pretesting effect is found even after a week`s duration. After a week, pretesting effect was observed in case of the covert retrieval group; however it did not last for the overt retrieval group. These results support the search set theory by Grimaladi and Karpicke (2012) which states that active exploration of related material promotes learning. The present study also suggests that overt retrieval brings about retrieval competition and interferes with the retrieval of correct responses, and thus disrupts learning.OAIID:oai:osos.snu.ac.kr:snu2012-01/102/2010001075/3SEQ:3PERF_CD:SNU2012-01EVAL_ITEM_CD:102USER_ID:2010001075ADJUST_YN:YEMP_ID:A078266DEPT_CD:207CITE_RATE:0FILENAME:20211147.pdfDEPT_NM:심리학과EMAIL:[email protected]_YN:NCONFIRM:

    Stabilization of whole-body motions for humanoid robots

    No full text
    Thesis(master`s)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계항곡곡학뢀,2006.Maste

    Determination and Optimization of welding condition using Fuzzy Expert System for MAG-Welding

    No full text

    Systems epidemiological approach for the effect of physical activity on prevention of cardiometabolic diseases

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : μ˜κ³ΌλŒ€ν•™ μ˜κ³Όν•™κ³Ό, 2022.2. μ΅œμ§€μ—½.Background: A number of studies have shown that physical activity reduces the risk of cardiometabolic diseases including type 2 diabetes, hypertension, and dyslipidemia. However, traditional epidemiology has a major limitation called the β€œblack box” paradigm in that it cannot fully understand complex biological mechanisms. Recently, high-throughput data including genome, metabolome, and microbiome have become available for epidemiological studies as omics techniques have been developed. The availability of these multi-omics biomarkers and the need for understanding biological processes lead to new concepts of systems epidemiology. We aimed to conduct this study following the systems epidemiological approach to understanding the biological process of the effect of physical activity on the prevention of cardiometabolic diseases. First, we examined the indirect effect of clinical parameters as mediators between physical activity and risk of cardiometabolic diseases and visualized the complex relationships between physical activity, various clinical parameters, and risk of cardiometabolic disease through the network. Second, we examined whether the changes in clinical parameters over time differ according to changes in physical activity behavior. Finally, we examined the changes in clinical parameters, metabolites, and the microbiome during physical activity intervention, and visualized integrated relationships at the multi-omics level through a network. Methods: The first study included 17,053 subjects aged 40–69 years in the Health Examinees-Gem (HEXA-G) study from 2004 to 2012. Participation or not in regular exercise at baseline and diagnosis of type 2 diabetes, hypertension, and dyslipidemia at follow-up were investigated by questionnaires. Anthropometric measures and laboratory tests from blood were conducted and data on 42 clinical parameters were collected. We examined the mediation effect of clinical parameters using mediation analyses. Clinical parameter networks were constructed based on the significant differential correlations (p < 0.05) between the exercise and non-exercise groups in men and women, respectively. The second study was conducted using a community-based cohort (Ansan Ansung cohort) from the 3rd wave to the 5th wave. A total of 3,962 men and women aged 40-69 were included and all analyses were performed in men and women, respectively. Participation or not in regular exercise was investigated by questionnaire like as HEXA-G study. According to the combination of regular exercise in each of the 3rd, 4th, and 5th waves (3rd/4th/5th), two groups of no changes in behavior (N/N/N, Y/Y/Y) and 4groups showed changes in behavior were defined. Twenty-three clinical parameters were obtained by anthropometric measurements and laboratory tests from blood. The relative changes (%) in clinical parameters were calculated from the 3rd wave to the 5th wave. The relative changes in clinical parameters according to the patterns and changes in regular exercise behavior were examined by the LSmeans and the general linear model. The third study included 14 middle-aged women who completed a physical activity intervention. The intervention was conducted with an exercise period of 3 months and a daily life period of 3 months. The amount of objective physical activity was measured by an accelerometer for 2 weeks each during the exercise period and daily life period. Blood collection, fecal collection, measurements of blood pressure, and test of exercise ability were performed three times: at the enrollment, after exercise period, and after daily life period. Glycemic indicators and lipid-related markers were obtained from blood, and the concentration of 208 blood metabolites was measured through targeted metabolomics. Microbiome data was obtained from fecal samples by 16s rRNA sequencing. The difference in biomarkers before and after the intervention period was examined by the Wilcoxon rank-sum test. The integrated relationship between biomarkers in omics level was examined by Spearman correlation coefficient and visualized via the network. Results: We observed significant mediators in 14 and 16 of the clinical parameters in men and women, respectively from the first study. Among the mediators, triglyceride level was a noteworthy mediator in decreasing the risk of CMD with exercise, explaining 23.79% in men and 58.20% in women. A group in which TG is linked to low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol was commonly observed in men and women through the clinical parameter network. Body composition-related markers were likely to play major roles in men, while obesity-related markers seemed to be key factors in women. In the second study, when comparing the group that did not exercise consistently (N/N/N), and the group that did exercise consistently (Y/Y/Y), there was a difference of changes in waist circumference, hip circumference, and fasting blood glucose in men, and changes in 6 body composition-related markers and 2 lipid-related markers showed differences in women. When the regular exercise group changed into the non-exercise behavior, the fasting blood glucose was greater increased in men, and the lipid-related markers were more increased in women. Conversely, when the non-exercise group changed into participating in regular exercise, body fat-related markers, fasting insulin, lipid-related markers were increased less or decreased in men, and body composition-related markers decreased less in women. Noteworthy, the triglycerides increased less when the non-exercise behavior changed into a regular exercise in both men and women. In the intervention study, physical activity decreased during the daily life period compared with the exercise period. After the exercise period, blood pressure, HbA1c, and LDL cholesterol were reduced, and they tended to increase again after the daily life period. During the exercise period, 40 metabolites showed significant changes, and they were correlated with changes in clinical parameters such as blood pressure, HbA1c, and LDL cholesterol in the network. Conclusion: This study used various biomarkers including omics to understand the understanding the biological processes of the effect of physical activity on the prevention of cardiometabolic diseases in terms of systems epidemiology. Moreover, not only the potential mechanisms centered on lipid-related markers but also relationships between clinical parameters and metabolites could be suggested by visualization of the integrated relationship between biomarkers in the network. The network analysis which used in this study can be applied to data obtained from untargeted metabolomics or whole-genome sequencing of the microbiome and contribute to identifying novel biomarkers or suggesting more detailed mechanisms.연ꡬ λ°°κ²½: μ‹ μ²΄ν™œλ™μ΄ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜(cardiometabolic diseases)의 λ°œμƒμœ„ν—˜μ„ κ°μ†Œμ‹œν‚¨λ‹€λŠ” 것은 μˆ˜λ§Žμ€ 역학연ꡬλ₯Ό 톡해 μ•Œλ €μ Έ μ™”λ‹€. κ·ΈλŸ¬λ‚˜ 톡상적인 μ—­ν•™μ—°κ΅¬λ‘œλŠ” μ§ˆλ³‘ 예방 기전에 κ΄€μ—¬λœ 생물학적 μš”μΈλ“€μ˜ 볡합적인 관계λ₯Ό μ΄ν•΄ν•˜κΈ° μ–΄λ ΅λ‹€λŠ” ν•œκ³„κ°€ μžˆλ‹€. 졜근 μ—­ν•™μ—°κ΅¬μ—μ„œλ„ μœ μ „μ²΄(genome)λ₯Ό ν¬ν•¨ν•œ λŒ€μ‚¬μ²΄(metabolome) λ˜λŠ” μž₯λ‚΄λ―Έμƒλ¬Όκ΅°μ˜ μœ μ „μ •λ³΄μΈ λ§ˆμ΄ν¬λ‘œλ°”μ΄μ˜΄(microbiome) λ“±μ˜ λŒ€μš©λŸ‰ 였믹슀(omics) 데이터듀이 이용 κ°€λŠ₯ν•˜κ²Œ 됨에 따라, λ‹€μˆ˜μ€€μ˜ μ—¬λŸ¬ μƒμ²΄μ§€ν‘œ 데이터듀을 μ΄μš©ν•˜μ—¬, μ΄λ“€κ°„μ˜ 톡합적인 관계λ₯Ό νŒŒμ•…ν•˜κ³  μ‹œκ°„μ˜ 흐름에 λ”°λ₯Έ λ³€ν™”λ₯Ό ν™•μΈν•˜λŠ” μ‹œμŠ€ν…œ 역학적 μ ‘κ·Όμ˜ ν•„μš”μ„±μ΄ 제기되고 μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ‹ μ²΄ν™œλ™μ˜ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ 예방 νš¨κ³Όμ™€ κ΄€λ ¨ν•˜μ—¬ κΈ°μ‘΄ μ—­ν•™μ—°κ΅¬μ˜ ν•œκ³„μ μ„ κ·Ήλ³΅ν•˜κ³  λ³΅μž‘ν•œ 생물학적 기전을 μ΄ν•΄ν•˜κΈ° μœ„ν•΄ μ‹œμŠ€ν…œ 역학적 μ ‘κ·Ό λ°©λ²•μœΌλ‘œ λ‹€μŒκ³Ό 같이 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. 첫 번째둜, μ‹ μ²΄ν™œλ™κ³Ό μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μœ„ν—˜ 사이에 λ§€κ°œμš”μΈμœΌλ‘œ μž‘μš©ν•˜λŠ” μž„μƒμ§€ν‘œλ“€μ˜ κ°„μ ‘νš¨κ³Όλ₯Ό ν™•μΈν•˜κ³ , κ·Έλ“€ μ‚¬μ΄μ˜ 볡합적인 관계λ₯Ό λ„€νŠΈμ›Œν¬λ‘œ λ³΄μ—¬μ£Όκ³ μž ν•˜μ˜€λ‹€. 두 λ²ˆμ§Έλ‘œλŠ” μ‹œκ°„μ˜ 흐름에 λ”°λ₯Έ μž„μƒμ§€ν‘œλ“€μ˜ λ³€ν™”κ°€ μ‹ μ²΄ν™œλ™μ˜ ν–‰νƒœ λ³€ν™” 양상에 따라 차이가 μžˆλŠ”μ§€λ₯Ό μ‚΄νŽ΄λ³΄κ³ μž ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μš΄λ™ μ€‘μž¬μ—°κ΅¬λ₯Ό 톡해 μž„μƒμ§€ν‘œλΏ μ•„λ‹ˆλΌ, λŒ€μ‚¬μ²΄μ™€ λ§ˆμ΄ν¬λ‘œλ°”μ΄μ˜΄μ˜ λ³€ν™”λ₯Ό ν™•μΈν•˜κ³  multi-omics μˆ˜μ€€μ—μ„œ 톡합적인 관계λ₯Ό λ„€νŠΈμ›Œν¬λ₯Ό 톡해 λ³΄μ—¬μ£Όκ³ μž ν•˜μ˜€λ‹€. 연ꡬ 방법: 첫 번째 μ—°κ΅¬λŠ” ν•œκ΅­ λ„μ‹œκΈ°λ°˜ μ½”ν˜ΈνŠΈ(HEXA-G)의 40-69μ„Έ 성인 17,053λͺ…을 ν¬ν•¨ν•˜μ˜€μœΌλ©° λͺ¨λ“  뢄석은 남녀 κ°κ°μ—μ„œ μˆ˜ν–‰ν•˜μ˜€λ‹€. κΈ°λ°˜μ‘°μ‚¬μ—μ„œ κ·œμΉ™μ μΈ μš΄λ™ μ—¬λΆ€λŠ” μ„€λ¬ΈμœΌλ‘œ μ‘°μ‚¬ν•˜μ˜€κ³ , 신체계츑과 ν˜ˆμ•‘κ²€μ‚¬λ‘œ 얻어진 μž„μƒμ§€ν‘œ 42개λ₯Ό 뢄석에 μ΄μš©ν•˜μ˜€λ‹€. μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μ—¬λΆ€λ₯Ό μ •μ˜ν•˜κΈ° μœ„ν•΄ μΆ”μ μ‘°μ‚¬μ—μ„œ μ„€λ¬ΈμœΌλ‘œ μ‘°μ‚¬λœ 당뇨, κ³ ν˜ˆμ••, μ΄μƒμ§€μ§ˆν˜ˆμ¦μ˜ 진단 여뢀와 진단 연도λ₯Ό μ‚¬μš©ν•˜μ˜€λ‹€. κ·œμΉ™μ μΈ μš΄λ™κ³Ό μž„μƒμ§€ν‘œκ°„μ˜ 연관성은 일반 μ„ ν˜• λͺ¨λΈμ„ 톡해 ν‰κ°€ν•˜μ˜€κ³ , κ·œμΉ™μ  μš΄λ™κ³Ό λŒ€μ‚¬μ§ˆν™˜ λ°œμƒμœ„ν—˜ κ°„μ˜ μ—°κ΄€μ„± 및 μž„μƒμ§€ν‘œλ“€κ³Ό λŒ€μ‚¬μ§ˆν™˜ λ°œμƒμœ„ν—˜ κ°„μ˜ 연관성은 μ½•μŠ€λΉ„λ‘€μœ„ν—˜λͺ¨λΈμ„ 톡해 ν™•μΈν•˜μ˜€λ‹€. λ§€κ°œλΆ„μ„μ„ 톡해 κ·œμΉ™μ μΈ μš΄λ™κ³Ό λŒ€μ‚¬μ§ˆν™˜ λ°œμƒμœ„ν—˜ μ‚¬μ΄μ˜ μ—°κ΄€μ„± μΆ”μ •μΉ˜ 쀑 μž„μƒμ§€ν‘œλ“€μ΄ κ°–λŠ” κ°„μ ‘νš¨κ³Όλ₯Ό μΆ”μ •ν•˜μ˜€λ‹€. μš΄λ™κ·Έλ£Ήκ³Ό λΉ„μš΄λ™κ·Έλ£Ή μ‚¬μ΄μ—μ„œ μœ μ˜ν•œ 차이λ₯Ό λ³΄μ΄λŠ” 차별적 상관관계(differential correlation)λ₯Ό 기반으둜 μž„μƒμ§€ν‘œ λ„€νŠΈμ›Œν¬λ₯Ό κ΅¬μΆ•ν•˜μ˜€λ‹€. 두 번째 μ—°κ΅¬λŠ” ν•œκ΅­ μ§€μ—­μ‚¬νšŒκΈ°λ°˜(μ•ˆμ‚° μ•ˆμ„±) μ½”ν˜ΈνŠΈ 3κΈ°λΆ€ν„° 5κΈ°κΉŒμ§€μ˜ 자료λ₯Ό μ΄μš©ν•˜μ˜€λ‹€. 40-69μ„Έ 성인 3,962λͺ…을 ν¬ν•¨ν•˜μ˜€μœΌλ©° 뢄석은 남녀 κ°κ°μ—μ„œ μˆ˜ν–‰ν•˜μ˜€λ‹€. λ„μ‹œκΈ°λ°˜ μ½”ν˜ΈνŠΈμ—μ„œμ™€ λ§ˆμ°¬κ°€μ§€λ‘œ μ„€λ¬ΈμœΌλ‘œ κ·œμΉ™μ μΈ μš΄λ™ μ—¬λΆ€λ₯Ό μ‘°μ‚¬ν•˜μ˜€κ³ , 3κΈ°, 4κΈ°, 5κΈ° κ°κ°μ—μ„œμ˜ κ·œμΉ™μ μΈ μš΄λ™ μ—¬λΆ€ 쑰합에 따라(3κΈ°/4κΈ°/5κΈ°) μš΄λ™ ν–‰νƒœ λ³€ν™”κ°€ μ—†λŠ” 2개 κ·Έλ£Ή(N/N/N, Y/Y/Y)κ³Ό μš΄λ™ ν–‰νƒœ λ³€ν™”λ₯Ό 보인 4개의 κ·Έλ£Ή(N/N/Y, N/Y/Y, Y/Y/N, Y/N/N)을 μ •μ˜ ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 신체계츑과 ν˜ˆμ•‘κ²€μ‚¬λ‘œ 얻어진 23개의 μž„μƒμ§€ν‘œλ₯Ό μ‚¬μš©ν•˜μ˜€κ³  각 μž„μƒμ§€ν‘œλ“€μ— λŒ€ν•˜μ—¬ 3κΈ° λŒ€λΉ„ 5κΈ°μ—μ„œμ˜ μƒλŒ€λ³€ν™”λŸ‰(%)을 κ³„μ‚°ν•˜μ˜€λ‹€. λ‚˜μ΄λ₯Ό λ³΄μ •ν•œ 평균(LSmeans)κ³Ό 일반 μ„ ν˜• λͺ¨λΈμ„ 톡해 κ·œμΉ™μ  μš΄λ™ μ°Έμ—¬ ν–‰νƒœ 양상에 λ”°λ₯Έ μž„μƒμ§€ν‘œ λ³€ν™”λŸ‰μ˜ 차이λ₯Ό ν™•μΈν•˜μ˜€λ‹€. μ„Έ 번째 μ—°κ΅¬λŠ” μ‹ μ²΄ν™œλ™ μ€‘μž¬μ—°κ΅¬λ₯Ό μ™„λ£Œν•œ 40-69μ„Έ 성인 μ—¬μ„± 14λͺ…을 ν¬ν•¨ν•˜μ˜€λ‹€. μ€‘μž¬μ—°κ΅¬λŠ” 3κ°œμ›”μ˜ μš΄λ™κΈ°κ°„κ³Ό 3κ°œμ›”μ˜ μΌμƒμƒν™œκΈ°κ°„μœΌλ‘œ μ§„ν–‰ν•˜μ˜€μœΌλ©°, μš΄λ™κΈ°κ°„κ³Ό μΌμƒμƒν™œκΈ°κ°„ κ°κ°μ—μ„œ 2μ£Όμ”© κ°€μ†λ„κ³„λ‘œ 객관적 μ‹ μ²΄ν™œλ™λŸ‰μ„ μΈ‘μ •ν•˜μ˜€λ‹€. 연ꡬ 등둝 μ‹œμ , μš΄λ™κΈ°κ°„ μ’…λ£Œ μ‹œμ , μΌμƒμƒν™œκΈ°κ°„ μ’…λ£Œ μ‹œμ  총 3νšŒμ— 걸쳐 μ±„ν˜ˆ, 채변, ν˜ˆμ•• μΈ‘μ • 및 μš΄λ™ λŠ₯λ ₯ 평가가 μ΄λ£¨μ–΄μ‘Œλ‹€. ν˜ˆμ•‘μœΌλ‘œλΆ€ν„° ν˜ˆλ‹Ή μ§€ν‘œ, μ§€μ§ˆ μ§€ν‘œλ₯Ό ν‰κ°€ν–ˆκ³ , ν‘œμ  λŒ€μ‚¬μ²΄ 뢄석(targeted metabolomics)을 톡해 208가지 ν˜ˆμ€‘ λŒ€μ‚¬μ²΄μ˜ 농도λ₯Ό μΈ‘μ •ν•˜μ˜€λ‹€. 16s rRNA sequencing 방법을 톡해 λŒ€λ³€μ‹œλ£Œμ˜ microbiome 데이터λ₯Ό ν™•λ³΄ν•˜μ˜€λ‹€. μœŒμ½•μŠ¨ μˆœμœ„ ν•© 검정을 톡해 μ€‘μž¬ μ „ν›„μ˜ μƒμ²΄μ§€ν‘œ 차이λ₯Ό κ²€μ •ν•˜μ˜€κ³ , μŠ€ν”Όμ–΄λ§Œ μƒκ΄€κ³„μˆ˜λ‘œ μƒμ²΄μ§€ν‘œ λ³€ν™”λ“€κ°„μ˜ 관계λ₯Ό ν™•μΈν•˜μ˜€λ‹€. 연ꡬ κ²°κ³Ό: λ„μ‹œκΈ°λ°˜ μ½”ν˜ΈνŠΈμ˜ μž„μƒμ§€ν‘œ κ°„μ ‘νš¨κ³Όλ₯Ό ν‰κ°€ν•œ μ—°κ΅¬μ—μ„œλŠ” 42개의 μž„μƒμ§€ν‘œλ“€ 쀑 λ‚¨μžμ—μ„œ 14개, μ—¬μžμ—μ„œ 16개의 μž„μƒμ§€ν‘œκ°€ κ·œμΉ™μ  μš΄λ™κ³Ό μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μœ„ν—˜κ°„μ˜ μ—°κ΄€μ„±μ—μ„œ μœ μ˜λ―Έν•œ κ°„μ ‘νš¨κ³Όλ₯Ό κ°–λŠ”λ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. κ·Έ μ€‘μ—μ„œλ„ 쀑성지방(triglyceride (TG))이 남녀 λͺ¨λ‘μ—μ„œ κ°€μž₯ 큰 λΆ„μœ¨λ‘œ 맀개효과λ₯Ό μ„€λͺ…ν•˜μ˜€λ‹€(λ‚¨μž: 23.79%, μ—¬μž: 58.20%). 남녀 κ°κ°μ—μ„œ κ΅¬μΆ•λœ μž„μƒμ§€ν‘œ λ„€νŠΈμ›Œν¬λ‘œλΆ€ν„° triglycerideκ°€ low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterolκ³Ό μ—°κ²°λœ ꡰ집이 κ³΅ν†΅μ μœΌλ‘œ κ΄€μ°°λ˜μ—ˆλ‹€. 반면, λ‚¨μžμ—μ„œλŠ” κ·Όμœ‘μ„ μ€‘μ‹¬μœΌλ‘œν•œ 체성뢄관련 μ§€ν‘œλ“€μ΄ ꡰ집을 μ΄λ£¨μ—ˆκ³ , μ—¬μžμ—μ„œλŠ” λ³΅λΆ€μ§€λ°©λŸ‰μ„ μ€‘μ‹¬μœΌλ‘œν•œ λΉ„λ§Œκ΄€λ ¨ μ§€ν‘œλ“€μ΄ μ£Όμš” ꡰ집을 μ΄λ£¨μ—ˆλ‹€. μ§€μ—­μ‚¬νšŒ μ½”ν˜ΈνŠΈμ—μ„œ μ§„ν–‰λœ μ—°κ΅¬μ—μ„œλŠ” μ‹œκ°„μ— λ”°λ₯Έ μš΄λ™ ν–‰νƒœ 변화에 λ”°λ₯Έ μž„μƒμ§€ν‘œμ˜ λ³€ν™”λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. μš΄λ™μ„ μ§€μ†μ μœΌλ‘œ ν•˜μ§€ μ•Šμ•˜λ˜ κ·Έλ£Ήκ³Ό μš΄λ™μ„ μ§€μ†μ μœΌλ‘œ ν–ˆλ˜ 그룹을 λΉ„κ΅ν•˜μ˜€μ„ λ•Œ, λ‚¨μ„±μ—μ„œλŠ” ν—ˆλ¦¬λ‘˜λ ˆ, μ—‰λ©μ΄λ‘˜λ ˆ, κ³΅λ³΅ν˜ˆλ‹Ή λ³€ν™”λŸ‰μ΄ 차이λ₯Ό λ³΄μ˜€κ³ , μ—¬μ„±μ—μ„œλŠ” 체성뢄관련 μ§€ν‘œ 6κ°œμ™€ μ§€μ§ˆκ΄€λ ¨ μ§€ν‘œ 2κ°œκ°€ 차이λ₯Ό λ³΄μ˜€λ‹€. κΈ°λ°˜μ‘°μ‚¬ μ‹œμ μ—μ„œ κ·œμΉ™μ μΈ μš΄λ™μ„ ν–ˆμœΌλ‚˜ μΆ”μ μ‘°μ‚¬μ—μ„œ μš΄λ™μ„ μ•ˆ ν•˜λŠ” ν–‰νƒœλ‘œ λ³€ν™”ν•œ 경우, λ‚¨μ„±μ—μ„œλŠ” κ³΅λ³΅ν˜ˆλ‹Ήμ˜ 증가 정도가 더 컀짐을 ν™•μΈν•˜μ˜€κ³ , μ—¬μ„±μ—μ„œλŠ” μ§€μ§ˆκ΄€λ ¨ μ§€ν‘œμ˜ μ¦κ°€λŸ‰μ΄ λ”μš± μ»€μ§€λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. κΈ°λ°˜μ‘°μ‚¬ μ‹œμ μ—μ„œ κ·œμΉ™μ μΈμš΄λ™μ„ ν•˜μ§€ μ•Šμ•˜μœΌλ‚˜ μΆ”μ μ‘°μ‚¬μ—μ„œ κ·œμΉ™μ μΈ μš΄λ™μ— μ°Έμ—¬ν•˜λŠ” ν–‰νƒœλ‘œ λ³€ν™”ν•˜λŠ” 경우, λ‚¨μ„±μ—μ„œλŠ” 체지방 μ§€ν‘œλ“€κ³Ό 곡볡 인슐린 수치, μ§€μ§ˆ μ§€ν‘œλ“€μ΄ 덜 μ¦κ°€ν•˜κ±°λ‚˜ 였히렀 κ°μ†Œν•˜μ˜€κ³ , μ—¬μ„±μ—μ„œλŠ” 체성뢄 μ§€ν‘œλ“€μ΄ 덜 κ°μ†Œν•˜μ˜€λ‹€. 남녀 κ³΅ν†΅μ μœΌλ‘œ μš΄λ™μ— μ°Έμ—¬ν•˜λŠ” ν–‰νƒœλ‘œ λ³€ν™”ν•˜μ˜€μ„ λ•Œ 쀑성지방이 덜 μ¦κ°€ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ€‘μž¬μ—°κ΅¬μ—μ„œλŠ” κ°κ΄€μ μœΌλ‘œ μΈ‘μ •λœ μ‹ μ²΄ν™œλ™λŸ‰μ΄ μš΄λ™κΈ°κ°„λ³΄λ‹€ μΌμƒμƒν™œκΈ°κ°„μ—μ„œ μœ μ˜ν•˜κ²Œ κ°μ†Œν•˜μ˜€λ‹€. 연ꡬ 등둝 μ‹œμ κ³Ό λΉ„κ΅ν•˜μ—¬ μš΄λ™κΈ°κ°„ 후에 ν˜ˆμ••κ³Ό ν˜ˆλ‹Ή μ§€ν‘œμΈ HbA1c, μ§€μ§ˆ μ§€ν‘œ μ€‘μ—μ„œλŠ” LDL μ½œλ ˆμŠ€ν…Œλ‘€μ΄ κ°μ†Œν•˜μ˜€κ³ , 이듀은 μΌμƒμƒν™œ 이후에 λ‹€μ‹œ μ¦κ°€ν•˜λŠ” κ²ƒμœΌλ‘œ λ³΄μ˜€λ‹€. μš΄λ™κΈ°κ°„ λ™μ•ˆ 40개의 λŒ€μ‚¬μ²΄κ°€ μœ μ˜ν•œ λ³€ν™”λ₯Ό λ³΄μ˜€μœΌλ©° 이쀑 6κ°œλŠ” μž„μƒμ§€ν‘œμΈ ν˜ˆμ••, HbA1c, LDL μ½œλ ˆμŠ€ν…Œλ‘€μ˜ 변화와 상관관계가 μžˆμŒμ„ λ„€νŠΈμ›Œν¬λ₯Ό 톡해 ν™•μΈν•˜μ˜€λ‹€. κ²°λ‘ : λ³Έ μ—°κ΅¬λŠ” μ‹ μ²΄ν™œλ™μ΄ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ μ˜ˆλ°©μ— λ―ΈμΉ˜λŠ” 영ν–₯에 κ΄€ν•œ 기전을 μ΄ν•΄ν•˜κ³ μž, μ‹œμŠ€ν…œ 역학적 μ ‘κ·ΌμœΌλ‘œμ„œ λ‹€μ–‘ν•œ μƒμ²΄μ§€ν‘œλ“€μ„ ν™œμš©ν•˜μ—¬ μ‹ μ²΄ν™œλ™κ³Όμ˜ 연관성뿐 μ•„λ‹ˆλΌ μ‹ μ²΄ν™œλ™μ˜ 변화에 λ”°λ₯Έ μƒμ²΄μ§€ν‘œμ˜ λ³€ν™” 및 μƒμ²΄μ§€ν‘œλ“€ μ‚¬μ΄μ˜ 볡합적인 관계λ₯Ό ν™•μΈν•˜μ˜€λ‹€. λ§€κ°œλΆ„μ„μ„ 톡해 μ‹ μ²΄ν™œλ™μœΌλ‘œ μΈν•œ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ μ˜ˆλ°©μ— μžˆμ–΄ 남녀 λͺ¨λ‘ triglycerideκ°€ κ°€μž₯ 큰 맀개효과λ₯Ό κ°–λŠ”λ‹€λŠ” 것을 확인할 수 μžˆμ—ˆκ³ , λ„€νŠΈμ›Œν¬ μ‹œκ°ν™”λ₯Ό 톡해 μ§€μ§ˆμ§€ν‘œλ“€ μ‚¬μ΄μ˜ 기전적 관계λ₯Ό 보여쀄 수 μžˆμ—ˆλ‹€. μš΄λ™ ν–‰νƒœ 변화에 λ”°λ₯Έ μž„μƒμ§€ν‘œμ˜ λ³€ν™”μ—μ„œλ„ 남녀 κ³΅ν†΅μ μœΌλ‘œ triglyceride이 λ³€ν™”κ°€ ν™•μΈλ˜μ—ˆμœΌλ©°, μ€‘μž¬μ—°κ΅¬λ₯Ό ν†΅ν•΄μ„œλŠ” ν˜ˆμ••, 당뇨, μ§€μ§ˆ κ΄€λ ¨ μž„μƒμ§€ν‘œμ™€ λŒ€μ‚¬μ²΄λ“€ μ‚¬μ΄μ˜ 잠재적인 관계λ₯Ό μ œμ•ˆν•  수 μžˆμ—ˆλ‹€. μ‹œμŠ€ν…œ 역학적 μ ‘κ·Ό 방법은 λ§Žμ€ μƒμ²΄μ§€ν‘œλ“€κ³Ό κ΄€λ ¨ μš”μΈ μ‚¬μ΄μ˜ 관계λ₯Ό ν†΅ν•©μ μœΌλ‘œ λΆ„μ„ν•˜κ³  μ‹œκ°ν™” ν•¨μœΌλ‘œμ¨ λ³΅μž‘ν•œ 관계에 λŒ€ν•œ 해석을 ν•  수 있게 ν•΄μ£Όλ©°, κ΄€λ ¨λœ 기전에 λŒ€ν•΄ 더 λ‚˜μ€ 이해λ₯Ό ν•  수 μžˆλ„λ‘ ν•΄μ€€λ‹€. λ˜ν•œ λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆλœ 기전듀을 μ‹€ν—˜μ—°κ΅¬μ—μ„œ μ§‘μ€‘μ μœΌλ‘œ λ‹€λ£ΈμœΌλ‘œμ¨ μ‹ μ²΄ν™œλ™μ΄ 건강에 λ―ΈμΉ˜λŠ” 이둜운 νš¨κ³Όμ— λŒ€ν•œ 기전을 밝히고 μ„€λͺ…ν•˜λŠ”λ° ν•œκ±ΈμŒ 더 λ‚˜μ•„κ°ˆ 수 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€ν•œλ‹€.초둝 i μ•½μ–΄ λͺ©λ‘ vii λͺ©μ°¨ x ν‘œ λͺ©λ‘ xii κ·Έλ¦Ό λͺ©λ‘ xiv 뢀둝 λͺ©λ‘ xvi 1. μ„œ λ‘  1 1.1 연ꡬ λ°°κ²½ 1 1.2 연ꡬ λͺ©μ  20 2. 연ꡬ 방법 및 κ²°κ³Ό 22 2.1. μ‹ μ²΄ν™œλ™κ³Ό μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μœ„ν—˜μ—μ„œμ˜ μž„μƒμ§€ν‘œλ₯Ό ν†΅ν•œ 맀개효과 및 톡합적 관계 평가 22 2.1.1 연ꡬ 방법 22 2.1.2 연ꡬ κ²°κ³Ό 34 2.2. μ‹ μ²΄ν™œλ™ ν–‰νƒœ λ³€ν™” 양상에 λ”°λ₯Έ μž„μƒμ§€ν‘œ λ³€ν™” 평가 45 2.1.1 연ꡬ 방법 45 2.1.2 연ꡬ κ²°κ³Ό 55 2.3. μš΄λ™ μ€‘μž¬μ— λ”°λ₯Έ 닀쀑 였믹슀 μƒμ²΄μ§€ν‘œ λ³€ν™” 및 톡합적 관계 평가 68 2.1.1 연ꡬ 방법 68 2.1.2 연ꡬ κ²°κ³Ό 77 3. κ³ μ°° 91 4. κ²°λ‘  103 μ°Έκ³ λ¬Έν—Œ 105 뢀둝 119 Abstract 177λ°•

    Legal Argument Analysis Using Bayesian Network

    No full text
    이 글은 초고 μƒνƒœμ—μ„œ μ§€λ‚œ 2013λ…„ 5μ›” 11일 μ„œμšΈλŒ€ν•™κ΅ λ²•ν•™μ—°κ΅¬μ†Œ 주졜 λ‡Œ, 마음, λ²•οΌλ‡ŒμΈμ§€κ³Όν•™κ³Ό λ²•μ˜ μΈν„°νŽ˜μ΄μŠ€ ν•™μˆ λŒ€νšŒμ—μ„œ λ°œν‘œν–ˆμœΌλ©°, κ·Έ ν›„ λ‚΄μš©μ„ μΆ”κ°€ν•˜μ—¬ λ…Όλ¬ΈμœΌλ‘œ μ™„μ„±ν•˜μ˜€μŒ.The criminal justice system places importance on identifying substantive truth. However, throughout all ages, uncovering substantive truth has been a difficult process, often plagued by errors and leading to erroneous conclusions. In recent years, both in Korea and abroad, many researchers are gathering information about wrong judgments in actual trials, in order to find ways to reduce them. With this as the backdrop, this study focuses on applying the legal argument analysis using Bayesian network to a few actual legal cases, and examines its applicability in the criminal justice system. The theoretical usefulness of Bayesian analysis has been recognized in various fields; however, its application has been difficult because of the complexity of calculation. Fortunately, recent advances in statistical techniques and development of software such as AgenaRisk have made it easier to apply Bayesian analysis. This study examines three legal cases using AgenaRisk program and ultimately seeks to increase the applicability of Bayesian analysis in the legal system.처벌과 κ΄€λ ¨λœ 법 μ œλ„μΈ ν˜•μ‚¬μ‚¬λ²•μ ˆμ°¨μ—μ„œλŠ” 사건에 λŒ€ν•œ 싀체적 진싀 규λͺ…을 μ€‘μ‹œν•œλ‹€. 그런데 μ˜ˆλ‚˜ μ§€κΈˆμ΄λ‚˜ 싀체적 진싀을 λ°νžˆκΈ°λž€ 쉽지 μ•Šμ„ 뿐만 μ•„λ‹ˆλΌ, μ’…μ’… κ·Έ κ³Όμ •μ—μ„œ 였λ₯˜λ₯Ό μΌμœΌν‚€κΈ°λ„ ν•˜κ³  결과적으둜 잘λͺ»λœ νŒλ‹¨μ— 이λ₯΄κΈ°λ„ ν•œλ‹€. κ΅­λ‚΄μ™Έμ—μ„œ 였판의 μ‹€νƒœλ₯Ό ν™•μΈν•˜κ³  μœ ν˜•μ„ λ‚˜λˆ„λŠ” 연ꡬ가 졜근 ν™œλ°œν•˜κ²Œ 이루어지고 있으며, 이λ₯Ό λ°”νƒ•μœΌλ‘œ μ˜€νŒμ„ 쀄이기 μœ„ν•œ μ‹€μ§ˆμ  λ°©μ•ˆμ΄ λͺ¨μƒ‰λ˜κ³  μžˆλ‹€. μ΄λŸ¬ν•œ λ°°κ²½μ—μ„œ, λ³Έ μ—°κ΅¬λŠ” 영미 ν•™κ³„μ—μ„œλŠ” 비ꡐ적 였래 μ „λΆ€ν„° νƒμƒ‰λ˜μ–΄ μ™”μŒμ—λ„ λΆˆκ΅¬ν•˜κ³  κ΅­λ‚΄μ—μ„œλŠ” μƒλŒ€μ μœΌλ‘œ μƒμ†Œν•œ λ² μ΄μ§€μ•ˆ 법적 논증 방식을 μ†Œκ°œν•˜κ³  κ΅­λ‚΄μ™Έμ˜ μ‹€μ œ 사건듀을 λŒ€μƒμœΌλ‘œ κ·Έ μ μš©κ°€λŠ₯성을 μ•Œμ•„λ³΄κ³ μž ν•˜μ˜€λ‹€. λ² μ΄μ§€μ•ˆ λΆ„μ„λ²•μ˜ 이둠적 μœ μš©μ„±μ€ λ„μ²˜μ—μ„œ μΈμ •λ˜μ—ˆμ§€λ§Œ, κ³„μ‚°μ˜ λ³΅μž‘μ„± λ•Œλ¬Έμ— μ „λ¬Έκ°€λ“€μ‘°μ°¨ 이 뢄석법을 μ μš©ν•˜λŠ” 것이 쉽지 μ•Šμ•˜λ‹€. 졜근 톡계학적 기법과 이λ₯Ό μ²˜λ¦¬ν•˜λŠ” μ†Œν”„νŠΈμ›¨μ–΄μ˜ λ°œμ „μœΌλ‘œ κ·Έ μ‚¬μš©κ°€λŠ₯성이 κ·Έ μ–΄λŠ λ•Œλ³΄λ‹€λ„ μœ λ§ν•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” AgenaRisk ν”„λ‘œκ·Έλž¨μ„ μ΄μš©ν•˜μ—¬ κ΅­λ‚΄μ™Έμ˜ μž¬νŒμ‚¬λ‘€λ₯Ό λΆ„μ„ν•˜κ³ , ꢁ극적으둜 법적 λ…Όμ¦μ—μ„œ λ² μ΄μ§€μ•ˆ λΆ„μ„λ²•μ˜ 적용 κ°€λŠ₯성을 λ†’μ΄κ³ μž ν•œλ‹€.λ³Έ μ—°κ΅¬λŠ” ν•œκ΅­μ—°κ΅¬μž¬λ‹¨ 2013λ…„ ν•™μ œκ°„μœ΅ν•©μ—°κ΅¬ μ§€μ›μ‚¬μ—…μ˜ μΌν™˜μœΌλ‘œ μ§‘ν•„λ˜μ—ˆμŒ

    μš©μ ‘ 결함 진단 μ „λ¬Έκ°€μ‹œμŠ€ν…œμ˜ 개발

    No full text

    Systems epidemiological approach for the effect of physical activity on prevention of cardiometabolic diseases

    Get PDF
    Background: A number of studies have shown that physical activity reduces the risk of cardiometabolic diseases including type 2 diabetes, hypertension, and dyslipidemia. However, traditional epidemiology has a major limitation called the β€œblack box” paradigm in that it cannot fully understand complex biological mechanisms. Recently, high-throughput data including genome, metabolome, and microbiome have become available for epidemiological studies as omics techniques have been developed. The availability of these multi-omics biomarkers and the need for understanding biological processes lead to new concepts of systems epidemiology. We aimed to conduct this study following the systems epidemiological approach to understanding the biological process of the effect of physical activity on the prevention of cardiometabolic diseases. First, we examined the indirect effect of clinical parameters as mediators between physical activity and risk of cardiometabolic diseases and visualized the complex relationships between physical activity, various clinical parameters, and risk of cardiometabolic disease through the network. Second, we examined whether the changes in clinical parameters over time differ according to changes in physical activity behavior. Finally, we examined the changes in clinical parameters, metabolites, and the microbiome during physical activity intervention, and visualized integrated relationships at the multi-omics level through a network. Methods: The first study included 17,053 subjects aged 40–69 years in the Health Examinees-Gem (HEXA-G) study from 2004 to 2012. Participation or not in regular exercise at baseline and diagnosis of type 2 diabetes, hypertension, and dyslipidemia at follow-up were investigated by questionnaires. Anthropometric measures and laboratory tests from blood were conducted and data on 42 clinical parameters were collected. We examined the mediation effect of clinical parameters using mediation analyses. Clinical parameter networks were constructed based on the significant differential correlations (p < 0.05) between the exercise and non-exercise groups in men and women, respectively. The second study was conducted using a community-based cohort (Ansan Ansung cohort) from the 3rd wave to the 5th wave. A total of 3,962 men and women aged 40-69 were included and all analyses were performed in men and women, respectively. Participation or not in regular exercise was investigated by questionnaire like as HEXA-G study. According to the combination of regular exercise in each of the 3rd, 4th, and 5th waves (3rd/4th/5th), two groups of no changes in behavior (N/N/N, Y/Y/Y) and 4groups showed changes in behavior were defined. Twenty-three clinical parameters were obtained by anthropometric measurements and laboratory tests from blood. The relative changes (%) in clinical parameters were calculated from the 3rd wave to the 5th wave. The relative changes in clinical parameters according to the patterns and changes in regular exercise behavior were examined by the LSmeans and the general linear model. The third study included 14 middle-aged women who completed a physical activity intervention. The intervention was conducted with an exercise period of 3 months and a daily life period of 3 months. The amount of objective physical activity was measured by an accelerometer for 2 weeks each during the exercise period and daily life period. Blood collection, fecal collection, measurements of blood pressure, and test of exercise ability were performed three times: at the enrollment, after exercise period, and after daily life period. Glycemic indicators and lipid-related markers were obtained from blood, and the concentration of 208 blood metabolites was measured through targeted metabolomics. Microbiome data was obtained from fecal samples by 16s rRNA sequencing. The difference in biomarkers before and after the intervention period was examined by the Wilcoxon rank-sum test. The integrated relationship between biomarkers in omics level was examined by Spearman correlation coefficient and visualized via the network. Results: We observed significant mediators in 14 and 16 of the clinical parameters in men and women, respectively from the first study. Among the mediators, triglyceride level was a noteworthy mediator in decreasing the risk of CMD with exercise, explaining 23.79% in men and 58.20% in women. A group in which TG is linked to low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol was commonly observed in men and women through the clinical parameter network. Body composition-related markers were likely to play major roles in men, while obesity-related markers seemed to be key factors in women. In the second study, when comparing the group that did not exercise consistently (N/N/N), and the group that did exercise consistently (Y/Y/Y), there was a difference of changes in waist circumference, hip circumference, and fasting blood glucose in men, and changes in 6 body composition-related markers and 2 lipid-related markers showed differences in women. When the regular exercise group changed into the non-exercise behavior, the fasting blood glucose was greater increased in men, and the lipid-related markers were more increased in women. Conversely, when the non-exercise group changed into participating in regular exercise, body fat-related markers, fasting insulin, lipid-related markers were increased less or decreased in men, and body composition-related markers decreased less in women. Noteworthy, the triglycerides increased less when the non-exercise behavior changed into a regular exercise in both men and women. In the intervention study, physical activity decreased during the daily life period compared with the exercise period. After the exercise period, blood pressure, HbA1c, and LDL cholesterol were reduced, and they tended to increase again after the daily life period. During the exercise period, 40 metabolites showed significant changes, and they were correlated with changes in clinical parameters such as blood pressure, HbA1c, and LDL cholesterol in the network. Conclusion: This study used various biomarkers including omics to understand the understanding the biological processes of the effect of physical activity on the prevention of cardiometabolic diseases in terms of systems epidemiology. Moreover, not only the potential mechanisms centered on lipid-related markers but also relationships between clinical parameters and metabolites could be suggested by visualization of the integrated relationship between biomarkers in the network. The network analysis which used in this study can be applied to data obtained from untargeted metabolomics or whole-genome sequencing of the microbiome and contribute to identifying novel biomarkers or suggesting more detailed mechanisms.연ꡬ λ°°κ²½: μ‹ μ²΄ν™œλ™μ΄ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜(cardiometabolic diseases)의 λ°œμƒμœ„ν—˜μ„ κ°μ†Œμ‹œν‚¨λ‹€λŠ” 것은 μˆ˜λ§Žμ€ 역학연ꡬλ₯Ό 톡해 μ•Œλ €μ Έ μ™”λ‹€. κ·ΈλŸ¬λ‚˜ 톡상적인 μ—­ν•™μ—°κ΅¬λ‘œλŠ” μ§ˆλ³‘ 예방 기전에 κ΄€μ—¬λœ 생물학적 μš”μΈλ“€μ˜ 볡합적인 관계λ₯Ό μ΄ν•΄ν•˜κΈ° μ–΄λ ΅λ‹€λŠ” ν•œκ³„κ°€ μžˆλ‹€. 졜근 μ—­ν•™μ—°κ΅¬μ—μ„œλ„ μœ μ „μ²΄(genome)λ₯Ό ν¬ν•¨ν•œ λŒ€μ‚¬μ²΄(metabolome) λ˜λŠ” μž₯λ‚΄λ―Έμƒλ¬Όκ΅°μ˜ μœ μ „μ •λ³΄μΈ λ§ˆμ΄ν¬λ‘œλ°”μ΄μ˜΄(microbiome) λ“±μ˜ λŒ€μš©λŸ‰ 였믹슀(omics) 데이터듀이 이용 κ°€λŠ₯ν•˜κ²Œ 됨에 따라, λ‹€μˆ˜μ€€μ˜ μ—¬λŸ¬ μƒμ²΄μ§€ν‘œ 데이터듀을 μ΄μš©ν•˜μ—¬, μ΄λ“€κ°„μ˜ 톡합적인 관계λ₯Ό νŒŒμ•…ν•˜κ³  μ‹œκ°„μ˜ 흐름에 λ”°λ₯Έ λ³€ν™”λ₯Ό ν™•μΈν•˜λŠ” μ‹œμŠ€ν…œ 역학적 μ ‘κ·Όμ˜ ν•„μš”μ„±μ΄ 제기되고 μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ‹ μ²΄ν™œλ™μ˜ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ 예방 νš¨κ³Όμ™€ κ΄€λ ¨ν•˜μ—¬ κΈ°μ‘΄ μ—­ν•™μ—°κ΅¬μ˜ ν•œκ³„μ μ„ κ·Ήλ³΅ν•˜κ³  λ³΅μž‘ν•œ 생물학적 기전을 μ΄ν•΄ν•˜κΈ° μœ„ν•΄ μ‹œμŠ€ν…œ 역학적 μ ‘κ·Ό λ°©λ²•μœΌλ‘œ λ‹€μŒκ³Ό 같이 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. 첫 번째둜, μ‹ μ²΄ν™œλ™κ³Ό μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μœ„ν—˜ 사이에 λ§€κ°œμš”μΈμœΌλ‘œ μž‘μš©ν•˜λŠ” μž„μƒμ§€ν‘œλ“€μ˜ κ°„μ ‘νš¨κ³Όλ₯Ό ν™•μΈν•˜κ³ , κ·Έλ“€ μ‚¬μ΄μ˜ 볡합적인 관계λ₯Ό λ„€νŠΈμ›Œν¬λ‘œ λ³΄μ—¬μ£Όκ³ μž ν•˜μ˜€λ‹€. 두 λ²ˆμ§Έλ‘œλŠ” μ‹œκ°„μ˜ 흐름에 λ”°λ₯Έ μž„μƒμ§€ν‘œλ“€μ˜ λ³€ν™”κ°€ μ‹ μ²΄ν™œλ™μ˜ ν–‰νƒœ λ³€ν™” 양상에 따라 차이가 μžˆλŠ”μ§€λ₯Ό μ‚΄νŽ΄λ³΄κ³ μž ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μš΄λ™ μ€‘μž¬μ—°κ΅¬λ₯Ό 톡해 μž„μƒμ§€ν‘œλΏ μ•„λ‹ˆλΌ, λŒ€μ‚¬μ²΄μ™€ λ§ˆμ΄ν¬λ‘œλ°”μ΄μ˜΄μ˜ λ³€ν™”λ₯Ό ν™•μΈν•˜κ³  multi-omics μˆ˜μ€€μ—μ„œ 톡합적인 관계λ₯Ό λ„€νŠΈμ›Œν¬λ₯Ό 톡해 λ³΄μ—¬μ£Όκ³ μž ν•˜μ˜€λ‹€. 연ꡬ 방법: 첫 번째 μ—°κ΅¬λŠ” ν•œκ΅­ λ„μ‹œκΈ°λ°˜ μ½”ν˜ΈνŠΈ(HEXA-G)의 40-69μ„Έ 성인 17,053λͺ…을 ν¬ν•¨ν•˜μ˜€μœΌλ©° λͺ¨λ“  뢄석은 남녀 κ°κ°μ—μ„œ μˆ˜ν–‰ν•˜μ˜€λ‹€. κΈ°λ°˜μ‘°μ‚¬μ—μ„œ κ·œμΉ™μ μΈ μš΄λ™ μ—¬λΆ€λŠ” μ„€λ¬ΈμœΌλ‘œ μ‘°μ‚¬ν•˜μ˜€κ³ , 신체계츑과 ν˜ˆμ•‘κ²€μ‚¬λ‘œ 얻어진 μž„μƒμ§€ν‘œ 42개λ₯Ό 뢄석에 μ΄μš©ν•˜μ˜€λ‹€. μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μ—¬λΆ€λ₯Ό μ •μ˜ν•˜κΈ° μœ„ν•΄ μΆ”μ μ‘°μ‚¬μ—μ„œ μ„€λ¬ΈμœΌλ‘œ μ‘°μ‚¬λœ 당뇨, κ³ ν˜ˆμ••, μ΄μƒμ§€μ§ˆν˜ˆμ¦μ˜ 진단 여뢀와 진단 연도λ₯Ό μ‚¬μš©ν•˜μ˜€λ‹€. κ·œμΉ™μ μΈ μš΄λ™κ³Ό μž„μƒμ§€ν‘œκ°„μ˜ 연관성은 일반 μ„ ν˜• λͺ¨λΈμ„ 톡해 ν‰κ°€ν•˜μ˜€κ³ , κ·œμΉ™μ  μš΄λ™κ³Ό λŒ€μ‚¬μ§ˆν™˜ λ°œμƒμœ„ν—˜ κ°„μ˜ μ—°κ΄€μ„± 및 μž„μƒμ§€ν‘œλ“€κ³Ό λŒ€μ‚¬μ§ˆν™˜ λ°œμƒμœ„ν—˜ κ°„μ˜ 연관성은 μ½•μŠ€λΉ„λ‘€μœ„ν—˜λͺ¨λΈμ„ 톡해 ν™•μΈν•˜μ˜€λ‹€. λ§€κ°œλΆ„μ„μ„ 톡해 κ·œμΉ™μ μΈ μš΄λ™κ³Ό λŒ€μ‚¬μ§ˆν™˜ λ°œμƒμœ„ν—˜ μ‚¬μ΄μ˜ μ—°κ΄€μ„± μΆ”μ •μΉ˜ 쀑 μž„μƒμ§€ν‘œλ“€μ΄ κ°–λŠ” κ°„μ ‘νš¨κ³Όλ₯Ό μΆ”μ •ν•˜μ˜€λ‹€. μš΄λ™κ·Έλ£Ήκ³Ό λΉ„μš΄λ™κ·Έλ£Ή μ‚¬μ΄μ—μ„œ μœ μ˜ν•œ 차이λ₯Ό λ³΄μ΄λŠ” 차별적 상관관계(differential correlation)λ₯Ό 기반으둜 μž„μƒμ§€ν‘œ λ„€νŠΈμ›Œν¬λ₯Ό κ΅¬μΆ•ν•˜μ˜€λ‹€. 두 번째 μ—°κ΅¬λŠ” ν•œκ΅­ μ§€μ—­μ‚¬νšŒκΈ°λ°˜(μ•ˆμ‚° μ•ˆμ„±) μ½”ν˜ΈνŠΈ 3κΈ°λΆ€ν„° 5κΈ°κΉŒμ§€μ˜ 자료λ₯Ό μ΄μš©ν•˜μ˜€λ‹€. 40-69μ„Έ 성인 3,962λͺ…을 ν¬ν•¨ν•˜μ˜€μœΌλ©° 뢄석은 남녀 κ°κ°μ—μ„œ μˆ˜ν–‰ν•˜μ˜€λ‹€. λ„μ‹œκΈ°λ°˜ μ½”ν˜ΈνŠΈμ—μ„œμ™€ λ§ˆμ°¬κ°€μ§€λ‘œ μ„€λ¬ΈμœΌλ‘œ κ·œμΉ™μ μΈ μš΄λ™ μ—¬λΆ€λ₯Ό μ‘°μ‚¬ν•˜μ˜€κ³ , 3κΈ°, 4κΈ°, 5κΈ° κ°κ°μ—μ„œμ˜ κ·œμΉ™μ μΈ μš΄λ™ μ—¬λΆ€ 쑰합에 따라(3κΈ°/4κΈ°/5κΈ°) μš΄λ™ ν–‰νƒœ λ³€ν™”κ°€ μ—†λŠ” 2개 κ·Έλ£Ή(N/N/N, Y/Y/Y)κ³Ό μš΄λ™ ν–‰νƒœ λ³€ν™”λ₯Ό 보인 4개의 κ·Έλ£Ή(N/N/Y, N/Y/Y, Y/Y/N, Y/N/N)을 μ •μ˜ ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 신체계츑과 ν˜ˆμ•‘κ²€μ‚¬λ‘œ 얻어진 23개의 μž„μƒμ§€ν‘œλ₯Ό μ‚¬μš©ν•˜μ˜€κ³  각 μž„μƒμ§€ν‘œλ“€μ— λŒ€ν•˜μ—¬ 3κΈ° λŒ€λΉ„ 5κΈ°μ—μ„œμ˜ μƒλŒ€λ³€ν™”λŸ‰(%)을 κ³„μ‚°ν•˜μ˜€λ‹€. λ‚˜μ΄λ₯Ό λ³΄μ •ν•œ 평균(LSmeans)κ³Ό 일반 μ„ ν˜• λͺ¨λΈμ„ 톡해 κ·œμΉ™μ  μš΄λ™ μ°Έμ—¬ ν–‰νƒœ 양상에 λ”°λ₯Έ μž„μƒμ§€ν‘œ λ³€ν™”λŸ‰μ˜ 차이λ₯Ό ν™•μΈν•˜μ˜€λ‹€. μ„Έ 번째 μ—°κ΅¬λŠ” μ‹ μ²΄ν™œλ™ μ€‘μž¬μ—°κ΅¬λ₯Ό μ™„λ£Œν•œ 40-69μ„Έ 성인 μ—¬μ„± 14λͺ…을 ν¬ν•¨ν•˜μ˜€λ‹€. μ€‘μž¬μ—°κ΅¬λŠ” 3κ°œμ›”μ˜ μš΄λ™κΈ°κ°„κ³Ό 3κ°œμ›”μ˜ μΌμƒμƒν™œκΈ°κ°„μœΌλ‘œ μ§„ν–‰ν•˜μ˜€μœΌλ©°, μš΄λ™κΈ°κ°„κ³Ό μΌμƒμƒν™œκΈ°κ°„ κ°κ°μ—μ„œ 2μ£Όμ”© κ°€μ†λ„κ³„λ‘œ 객관적 μ‹ μ²΄ν™œλ™λŸ‰μ„ μΈ‘μ •ν•˜μ˜€λ‹€. 연ꡬ 등둝 μ‹œμ , μš΄λ™κΈ°κ°„ μ’…λ£Œ μ‹œμ , μΌμƒμƒν™œκΈ°κ°„ μ’…λ£Œ μ‹œμ  총 3νšŒμ— 걸쳐 μ±„ν˜ˆ, 채변, ν˜ˆμ•• μΈ‘μ • 및 μš΄λ™ λŠ₯λ ₯ 평가가 μ΄λ£¨μ–΄μ‘Œλ‹€. ν˜ˆμ•‘μœΌλ‘œλΆ€ν„° ν˜ˆλ‹Ή μ§€ν‘œ, μ§€μ§ˆ μ§€ν‘œλ₯Ό ν‰κ°€ν–ˆκ³ , ν‘œμ  λŒ€μ‚¬μ²΄ 뢄석(targeted metabolomics)을 톡해 208가지 ν˜ˆμ€‘ λŒ€μ‚¬μ²΄μ˜ 농도λ₯Ό μΈ‘μ •ν•˜μ˜€λ‹€. 16s rRNA sequencing 방법을 톡해 λŒ€λ³€μ‹œλ£Œμ˜ microbiome 데이터λ₯Ό ν™•λ³΄ν•˜μ˜€λ‹€. μœŒμ½•μŠ¨ μˆœμœ„ ν•© 검정을 톡해 μ€‘μž¬ μ „ν›„μ˜ μƒμ²΄μ§€ν‘œ 차이λ₯Ό κ²€μ •ν•˜μ˜€κ³ , μŠ€ν”Όμ–΄λ§Œ μƒκ΄€κ³„μˆ˜λ‘œ μƒμ²΄μ§€ν‘œ λ³€ν™”λ“€κ°„μ˜ 관계λ₯Ό ν™•μΈν•˜μ˜€λ‹€. 연ꡬ κ²°κ³Ό: λ„μ‹œκΈ°λ°˜ μ½”ν˜ΈνŠΈμ˜ μž„μƒμ§€ν‘œ κ°„μ ‘νš¨κ³Όλ₯Ό ν‰κ°€ν•œ μ—°κ΅¬μ—μ„œλŠ” 42개의 μž„μƒμ§€ν‘œλ“€ 쀑 λ‚¨μžμ—μ„œ 14개, μ—¬μžμ—μ„œ 16개의 μž„μƒμ§€ν‘œκ°€ κ·œμΉ™μ  μš΄λ™κ³Ό μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μœ„ν—˜κ°„μ˜ μ—°κ΄€μ„±μ—μ„œ μœ μ˜λ―Έν•œ κ°„μ ‘νš¨κ³Όλ₯Ό κ°–λŠ”λ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. κ·Έ μ€‘μ—μ„œλ„ 쀑성지방(triglyceride (TG))이 남녀 λͺ¨λ‘μ—μ„œ κ°€μž₯ 큰 λΆ„μœ¨λ‘œ 맀개효과λ₯Ό μ„€λͺ…ν•˜μ˜€λ‹€(λ‚¨μž: 23.79%, μ—¬μž: 58.20%). 남녀 κ°κ°μ—μ„œ κ΅¬μΆ•λœ μž„μƒμ§€ν‘œ λ„€νŠΈμ›Œν¬λ‘œλΆ€ν„° triglycerideκ°€ low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterolκ³Ό μ—°κ²°λœ ꡰ집이 κ³΅ν†΅μ μœΌλ‘œ κ΄€μ°°λ˜μ—ˆλ‹€. 반면, λ‚¨μžμ—μ„œλŠ” κ·Όμœ‘μ„ μ€‘μ‹¬μœΌλ‘œν•œ 체성뢄관련 μ§€ν‘œλ“€μ΄ ꡰ집을 μ΄λ£¨μ—ˆκ³ , μ—¬μžμ—μ„œλŠ” λ³΅λΆ€μ§€λ°©λŸ‰μ„ μ€‘μ‹¬μœΌλ‘œν•œ λΉ„λ§Œκ΄€λ ¨ μ§€ν‘œλ“€μ΄ μ£Όμš” ꡰ집을 μ΄λ£¨μ—ˆλ‹€. μ§€μ—­μ‚¬νšŒ μ½”ν˜ΈνŠΈμ—μ„œ μ§„ν–‰λœ μ—°κ΅¬μ—μ„œλŠ” μ‹œκ°„μ— λ”°λ₯Έ μš΄λ™ ν–‰νƒœ 변화에 λ”°λ₯Έ μž„μƒμ§€ν‘œμ˜ λ³€ν™”λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. μš΄λ™μ„ μ§€μ†μ μœΌλ‘œ ν•˜μ§€ μ•Šμ•˜λ˜ κ·Έλ£Ήκ³Ό μš΄λ™μ„ μ§€μ†μ μœΌλ‘œ ν–ˆλ˜ 그룹을 λΉ„κ΅ν•˜μ˜€μ„ λ•Œ, λ‚¨μ„±μ—μ„œλŠ” ν—ˆλ¦¬λ‘˜λ ˆ, μ—‰λ©μ΄λ‘˜λ ˆ, κ³΅λ³΅ν˜ˆλ‹Ή λ³€ν™”λŸ‰μ΄ 차이λ₯Ό λ³΄μ˜€κ³ , μ—¬μ„±μ—μ„œλŠ” 체성뢄관련 μ§€ν‘œ 6κ°œμ™€ μ§€μ§ˆκ΄€λ ¨ μ§€ν‘œ 2κ°œκ°€ 차이λ₯Ό λ³΄μ˜€λ‹€. κΈ°λ°˜μ‘°μ‚¬ μ‹œμ μ—μ„œ κ·œμΉ™μ μΈ μš΄λ™μ„ ν–ˆμœΌλ‚˜ μΆ”μ μ‘°μ‚¬μ—μ„œ μš΄λ™μ„ μ•ˆ ν•˜λŠ” ν–‰νƒœλ‘œ λ³€ν™”ν•œ 경우, λ‚¨μ„±μ—μ„œλŠ” κ³΅λ³΅ν˜ˆλ‹Ήμ˜ 증가 정도가 더 컀짐을 ν™•μΈν•˜μ˜€κ³ , μ—¬μ„±μ—μ„œλŠ” μ§€μ§ˆκ΄€λ ¨ μ§€ν‘œμ˜ μ¦κ°€λŸ‰μ΄ λ”μš± μ»€μ§€λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. κΈ°λ°˜μ‘°μ‚¬ μ‹œμ μ—μ„œ κ·œμΉ™μ μΈμš΄λ™μ„ ν•˜μ§€ μ•Šμ•˜μœΌλ‚˜ μΆ”μ μ‘°μ‚¬μ—μ„œ κ·œμΉ™μ μΈ μš΄λ™μ— μ°Έμ—¬ν•˜λŠ” ν–‰νƒœλ‘œ λ³€ν™”ν•˜λŠ” 경우, λ‚¨μ„±μ—μ„œλŠ” 체지방 μ§€ν‘œλ“€κ³Ό 곡볡 인슐린 수치, μ§€μ§ˆ μ§€ν‘œλ“€μ΄ 덜 μ¦κ°€ν•˜κ±°λ‚˜ 였히렀 κ°μ†Œν•˜μ˜€κ³ , μ—¬μ„±μ—μ„œλŠ” 체성뢄 μ§€ν‘œλ“€μ΄ 덜 κ°μ†Œν•˜μ˜€λ‹€. 남녀 κ³΅ν†΅μ μœΌλ‘œ μš΄λ™μ— μ°Έμ—¬ν•˜λŠ” ν–‰νƒœλ‘œ λ³€ν™”ν•˜μ˜€μ„ λ•Œ 쀑성지방이 덜 μ¦κ°€ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ€‘μž¬μ—°κ΅¬μ—μ„œλŠ” κ°κ΄€μ μœΌλ‘œ μΈ‘μ •λœ μ‹ μ²΄ν™œλ™λŸ‰μ΄ μš΄λ™κΈ°κ°„λ³΄λ‹€ μΌμƒμƒν™œκΈ°κ°„μ—μ„œ μœ μ˜ν•˜κ²Œ κ°μ†Œν•˜μ˜€λ‹€. 연ꡬ 등둝 μ‹œμ κ³Ό λΉ„κ΅ν•˜μ—¬ μš΄λ™κΈ°κ°„ 후에 ν˜ˆμ••κ³Ό ν˜ˆλ‹Ή μ§€ν‘œμΈ HbA1c, μ§€μ§ˆ μ§€ν‘œ μ€‘μ—μ„œλŠ” LDL μ½œλ ˆμŠ€ν…Œλ‘€μ΄ κ°μ†Œν•˜μ˜€κ³ , 이듀은 μΌμƒμƒν™œ 이후에 λ‹€μ‹œ μ¦κ°€ν•˜λŠ” κ²ƒμœΌλ‘œ λ³΄μ˜€λ‹€. μš΄λ™κΈ°κ°„ λ™μ•ˆ 40개의 λŒ€μ‚¬μ²΄κ°€ μœ μ˜ν•œ λ³€ν™”λ₯Ό λ³΄μ˜€μœΌλ©° 이쀑 6κ°œλŠ” μž„μƒμ§€ν‘œμΈ ν˜ˆμ••, HbA1c, LDL μ½œλ ˆμŠ€ν…Œλ‘€μ˜ 변화와 상관관계가 μžˆμŒμ„ λ„€νŠΈμ›Œν¬λ₯Ό 톡해 ν™•μΈν•˜μ˜€λ‹€. κ²°λ‘ : λ³Έ μ—°κ΅¬λŠ” μ‹ μ²΄ν™œλ™μ΄ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ μ˜ˆλ°©μ— λ―ΈμΉ˜λŠ” 영ν–₯에 κ΄€ν•œ 기전을 μ΄ν•΄ν•˜κ³ μž, μ‹œμŠ€ν…œ 역학적 μ ‘κ·ΌμœΌλ‘œμ„œ λ‹€μ–‘ν•œ μƒμ²΄μ§€ν‘œλ“€μ„ ν™œμš©ν•˜μ—¬ μ‹ μ²΄ν™œλ™κ³Όμ˜ 연관성뿐 μ•„λ‹ˆλΌ μ‹ μ²΄ν™œλ™μ˜ 변화에 λ”°λ₯Έ μƒμ²΄μ§€ν‘œμ˜ λ³€ν™” 및 μƒμ²΄μ§€ν‘œλ“€ μ‚¬μ΄μ˜ 볡합적인 관계λ₯Ό ν™•μΈν•˜μ˜€λ‹€. λ§€κ°œλΆ„μ„μ„ 톡해 μ‹ μ²΄ν™œλ™μœΌλ‘œ μΈν•œ μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ μ˜ˆλ°©μ— μžˆμ–΄ 남녀 λͺ¨λ‘ triglycerideκ°€ κ°€μž₯ 큰 맀개효과λ₯Ό κ°–λŠ”λ‹€λŠ” 것을 확인할 수 μžˆμ—ˆκ³ , λ„€νŠΈμ›Œν¬ μ‹œκ°ν™”λ₯Ό 톡해 μ§€μ§ˆμ§€ν‘œλ“€ μ‚¬μ΄μ˜ 기전적 관계λ₯Ό 보여쀄 수 μžˆμ—ˆλ‹€. μš΄λ™ ν–‰νƒœ 변화에 λ”°λ₯Έ μž„μƒμ§€ν‘œμ˜ λ³€ν™”μ—μ„œλ„ 남녀 κ³΅ν†΅μ μœΌλ‘œ triglyceride이 λ³€ν™”κ°€ ν™•μΈλ˜μ—ˆμœΌλ©°, μ€‘μž¬μ—°κ΅¬λ₯Ό ν†΅ν•΄μ„œλŠ” ν˜ˆμ••, 당뇨, μ§€μ§ˆ κ΄€λ ¨ μž„μƒμ§€ν‘œμ™€ λŒ€μ‚¬μ²΄λ“€ μ‚¬μ΄μ˜ 잠재적인 관계λ₯Ό μ œμ•ˆν•  수 μžˆμ—ˆλ‹€. μ‹œμŠ€ν…œ 역학적 μ ‘κ·Ό 방법은 λ§Žμ€ μƒμ²΄μ§€ν‘œλ“€κ³Ό κ΄€λ ¨ μš”μΈ μ‚¬μ΄μ˜ 관계λ₯Ό ν†΅ν•©μ μœΌλ‘œ λΆ„μ„ν•˜κ³  μ‹œκ°ν™” ν•¨μœΌλ‘œμ¨ λ³΅μž‘ν•œ 관계에 λŒ€ν•œ 해석을 ν•  수 있게 ν•΄μ£Όλ©°, κ΄€λ ¨λœ 기전에 λŒ€ν•΄ 더 λ‚˜μ€ 이해λ₯Ό ν•  수 μžˆλ„λ‘ ν•΄μ€€λ‹€. λ˜ν•œ λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆλœ 기전듀을 μ‹€ν—˜μ—°κ΅¬μ—μ„œ μ§‘μ€‘μ μœΌλ‘œ λ‹€λ£ΈμœΌλ‘œμ¨ μ‹ μ²΄ν™œλ™μ΄ 건강에 λ―ΈμΉ˜λŠ” 이둜운 νš¨κ³Όμ— λŒ€ν•œ 기전을 밝히고 μ„€λͺ…ν•˜λŠ”λ° ν•œκ±ΈμŒ 더 λ‚˜μ•„κ°ˆ 수 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€ν•œλ‹€.초둝 i μ•½μ–΄ λͺ©λ‘ vii λͺ©μ°¨ x ν‘œ λͺ©λ‘ xii κ·Έλ¦Ό λͺ©λ‘ xiv 뢀둝 λͺ©λ‘ xvi 1. μ„œ λ‘  1 1.1 연ꡬ λ°°κ²½ 1 1.2 연ꡬ λͺ©μ  20 2. 연ꡬ 방법 및 κ²°κ³Ό 22 2.1. μ‹ μ²΄ν™œλ™κ³Ό μ‹¬ν˜ˆκ΄€ λŒ€μ‚¬μ§ˆν™˜ λ°œμƒ μœ„ν—˜μ—μ„œμ˜ μž„μƒμ§€ν‘œλ₯Ό ν†΅ν•œ 맀개효과 및 톡합적 관계 평가 22 2.1.1 연ꡬ 방법 22 2.1.2 연ꡬ κ²°κ³Ό 34 2.2. μ‹ μ²΄ν™œλ™ ν–‰νƒœ λ³€ν™” 양상에 λ”°λ₯Έ μž„μƒμ§€ν‘œ λ³€ν™” 평가 45 2.1.1 연ꡬ 방법 45 2.1.2 연ꡬ κ²°κ³Ό 55 2.3. μš΄λ™ μ€‘μž¬μ— λ”°λ₯Έ 닀쀑 였믹슀 μƒμ²΄μ§€ν‘œ λ³€ν™” 및 톡합적 관계 평가 68 2.1.1 연ꡬ 방법 68 2.1.2 연ꡬ κ²°κ³Ό 77 3. κ³ μ°° 91 4. κ²°λ‘  103 μ°Έκ³ λ¬Έν—Œ 105 뢀둝 119 Abstract 177λ°•

    Development of Welding Information System for Power and Industrial Plant

    No full text

    A Critical Review on Libets Work and Follow-up Studies on Free Will - Implications of Neuroscientific Research on Criminal Law -

    No full text
    μžμœ μ˜μ§€μ˜ μ‘΄μž¬μ— λŒ€ν•œ λ…ΌμŸμ€ μ² ν•™μ—μ„œλŠ” λ¬Όλ‘  법적 νŒλ‹¨μ—μ„œ μ±…μž„λ‘ κ³Ό κ΄€λ ¨λ˜μ–΄ λ²•ν•™μ—μ„œλ„ 닀루어지고 μžˆλ‹€. 이듀은 주둜 κ°œλ…μ  λΆ„μ„μ΄λ‚˜ λ‹Ήμœ„μ„± 등을 μ „μ œλ‘œ ν•œ 사변적 λ…Όμ˜μ˜€λ‹€. 그런데 이 μ£Όμ œμ— λŒ€ν•œ 신경과학적 연ꡬ가 μ§„ν–‰λ˜λ©΄μ„œ λ…ΌμŸμ— μ°Έμ—¬ν•˜λŠ” μ—°κ΅¬μžμ˜ λ²”μœ„κ°€ ν™•μž₯되고 μžˆλ‹€. Libet, Gleason, Wright, & Pearl (1983)의 μ—°κ΅¬λŠ” κ·Έ μ€‘μš”ν•œ μ‹œλ°œμ μ΄λ‹€. 이 μ—°κ΅¬μžλ“€μ€ λ‡Œν™œλ™κ³Ό μ˜μ‹μ  μ˜λ„κ°„μ˜ 관련성을 μΈ‘μ •ν•œ κ²°κ³Όλ₯Ό λ°”νƒ•μœΌλ‘œ, 우리의 행동은 λ¬Όλ‘  κ·Έ 행동을 ν•˜κ³ μž ν•˜λŠ” μ˜μ‹μ  μ˜λ„λ„ 그에 μ„ ν–‰ν•˜λŠ” λ¬΄μ˜μ‹μ  λ‡Œ ν™œλ™μ—μ„œ λΉ„λ‘―λœλ‹€κ³  μ£Όμž₯ν•˜μ˜€λ‹€. λ³Έ κ³ μ—μ„œλŠ” Libet λ“±μ˜ 연ꡬλ₯Ό κ°„λž΅νžˆ μ‚΄νŽ΄λ³Έ ν›„, 후속 연ꡬλ₯Ό 톡해 λ°ν˜€μ§„ λ¬Έμ œμ μ„ μ ˆμ°¨μƒμ˜ λ¬Έμ œμ™€ Libet λ“±μ˜ κ°€μ •μ—μ„œμ˜ 문제둜 λ‚˜λˆ„μ–΄ μ‚΄νŽ΄λ³΄μ•˜λ‹€. λ˜ν•œ Libet λ“±μ˜ 연ꡬ κ²°κ³Όλ₯Ό ν¬ν•¨ν•˜μ—¬ 신경과학적 λ°œκ²¬μ„ λ²•μ‘°κ³„μ—μ„œ μˆ˜μš©ν•˜λŠ” 방식에 λŒ€ν•œ λͺ‡ 가지 μ œμ•ˆμ„ ν•˜μ˜€λ‹€.이 논문은 2010년도 SNU Brain Fusion Program(μ‹ κ²½κ³Όν•™κ³Ό 법 연ꡬ) 지원사업비λ₯Ό 지원받아 μ—°κ΅¬λ˜μ—ˆλ‹€
    corecore