48 research outputs found
์ธ๊ณต์ ๊ฒฝ๋ง์ ์ด์ฉํ ์๊ฒฉ์์ค์ผ์ผ ์๋ ฅ ๋ชจ๋ธ๋ง๊ณผ ๋๋ฅ ์ฑ๋ ๋ฐ ํํฅ ๊ณ๋จ ์ ๋์์ ์ ์ฉ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๊ณต๊ณผ๋ํ ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ(๋ฉํฐ์ค์ผ์ผ ๊ธฐ๊ณ์ค๊ณ์ ๊ณต), 2021.8. ์ตํด์ฒ.A fully-connected neural network (NN) is used to develop a subgrid-scale model which maps the relation between the subgrid-scale stress and filtered flow variable in a turbulent channel (Part I) and backward-facing-step (Part II) flows.
For turbulent channel flow, DNS (direct numerical simulation) database of Reฯ = 178 is used to develop an NN-based subgrid-scale (SGS) model, and a priori and a posteriori tests are performed to investigate its prediction performance. In a priori test, an NN-based SGS model with the input of filtered velocity gradient or strain rate tensor at multiple grid points provides high correlation coefficients between the true and predicted SGS stresses. However, this model provides an unstable solution in a posteriori test, as the model produces a non-negligible backscatter which is known to induce numerical instability in large eddy simulation (LES). To ensure a stable LES solution with this model, a special treatment like backscatter clipping is required. On the other hand, an NN-based SGS model with the input of filtered strain rate tensor at a single grid point shows an excellent prediction performance for the mean velocity and Reynolds shear stress in a posteriori test, although it gives low correlation coefficients between the true and predicted SGS stresses in a priori test. This NN-based SGS model trained at Reฯ = 178 is applied to a turbulent channel flow at Reฯ = 723 using the same grid resolution in wall units, providing fairly good agreements of the solutions with the filtered DNS data. When the grid resolution in wall units is different from that of trained data, this NN-based SGS model does not perform well. This is overcome by training an NN with the datasets having two filters whose sizes are larger and smaller than the grid size in large eddy simulation.
For turbulent flow over a backward-facing step (BFS), an NN-based SGS model is developed with the filtered DNS data at Reh = 5100. Two input variables, the filtered strain rate and velocity gradient tensors at a single grid point, respectively, are adopted, where the NN-based SGS models with these inputs provide a stable LES solution in the turbulent channel flow without any special treatment. In the LES at Reh = 5100, those NN-based SGS models show similar performance, and provide good predictions for the reattachment length and root-mean-square velocity fluctuations. Then, we assess the performance of the NN-based SGS model with the input of filtered strain rate tensor for the LES at Reh = 24000, and this model provides fairly good results, compared to those from the LES with dynamic Smagorinsky model (DSM). Finally, we apply this model for LES of controlled BFS flow with multiple taps installed at the step edge. LES with this NN-based SGS model predicts the amount of reduction in the reattachment length better than by LES with DSM, showing that the NN-based model trained with uncontrolled BFS flow maintains its prediction performance in LES of controlled BFS flow.๋ณธ ์ฐ๊ตฌ์์๋ ๋๋ฅ ์ฑ๋ ์ ๋๊ณผ ํํฅ ๊ณ๋จ ์ฃผ์ ๋๋ฅ ์ ๋์ ๋ํด, ํํฐ๋ง ๋ ์ ๋๋ณ์๋ฅผ ์
๋ ฅ๋ณ์๋ก ํ์ฌ ์๊ฒฉ์์ค์ผ์ผ (subgrid scale, SGS) ์๋ ฅ์ ์์ธกํ๋ ์ธ๊ณต์ ๊ฒฝ๋ง ๊ธฐ๋ฐ SGS ๋ชจ๋ธ์ ๊ฐ๋ฐํ์๋ค.
๋๋ฅ ์ฑ๋ ์ ๋์ ๊ฒฝ์ฐ, ํํฐ๋ง ๋ ์ง์ ์์น๋ชจ์ฌ ๋ฐ์ดํฐ๋ฒ ์ด์ค(Reฯ = 178)๋ฅผ ์ฌ์ฉํ์ฌ ์ธ๊ณต์ ๊ฒฝ๋ง ๊ธฐ๋ฐ SGS ๋ชจ๋ธ์ ๊ฐ๋ฐํ๊ณ , ๋ณธ ๋ชจ๋ธ์ ์ฑ๋ฅ์ ํ๊ฐํ๊ธฐ ์ํด ์ฌ์ ๋ฐ ์ฌํ ํ
์คํธ๋ฅผ ์ํํ์๋ค. ์ฌ์ ํ
์คํธ์์, ์ฌ๋ฌ ๊ฒฉ์์ ์ ์๋ ํํฐ๋ง ๋ ์๋๊ธฐ์ธ๊ธฐ ๋๋ ์๋๋ณํ๋ฅ ํ
์๋ฅผ ์
๋ ฅ๋ณ์๋ก ํ๋ ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ ์ค์ SGS ์๋ ฅ๊ณผ ๋์ ์๊ด๊ณ์๋ฅผ ๋ณด์ด๋ SGS ์๋ ฅ์ ์์ธกํ์๋ค. ๊ทธ๋ฌ๋ ์ด ๋ชจ๋ธ์ ์ฌํ ํ
์คํธ์์ ๋ถ์์ ํ ์์น๊ณ์ฐ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ฌ์ฃผ์๊ณ , LES ์๋ฃจ์
์ ์ป๊ธฐ ์ํด์๋ ํ๋ฐฉ ์ฐ๋(backscatter)์ ๊ฐ์ ์ ์ผ๋ก ์์ ๋ ๋ฑ์ ์์์ ์ธ ์ฒ๋ฆฌ๋ฅผ ํ์๋ก ํ๋ค. ๋ฐ๋ฉด, ๋จ์ผ ๊ฒฉ์์ ์์์ ํํฐ๋ง ๋ ์๋๋ณํ๋ฅ ํ
์๋ฅผ ์
๋ ฅ๋ณ์๋ก ํ ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์, ์ฌ์ ํ
์คํธ์์ ์ค์ ๊ฐ๊ณผ ๋ฎ์ ์๊ด๊ณ์๋ฅผ ๋ณด์ด๋ SGS ์๋ ฅ์ ์์ธกํ์์ผ๋, ์ฌํ ํ
์คํธ์์ ํ๊ท ์๋ ํ๋กํ์ผ๊ณผ Reynolds ์ ๋จ ์๋ ฅ์ ๋ํด ์ฐ์ํ ์์ธก ์ฑ๋ฅ์ ๋ณด์๋ค. ๋ ๋์ Reynolds ์์์ ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ ์ฑ๋ฅ์ ํ์ธํ๊ธฐ ์ํ์ฌ, Reฯ = 178์์ ํ๋ จ๋ ์ธ๊ณต์ ๊ฒฝ๋ง ๊ธฐ๋ฐ SGS ๋ชจ๋ธ(์
๋ ฅ๋ณ์: ๋จ์ผ ๊ฒฉ์์ ์ ํํฐ๋ง ๋ ์๋๋ณํ๋ฅ ํ
์)์, Reฯ = 723์ ํฐ ์๋ ๋ชจ์ฌ์ ์ ์ฉํ์๋ค. ๋ฒฝ ๋จ์ ๊ฒฉ์ ํฌ๊ธฐ๋ฅผ ํ์ต๋ฐ์ดํฐ์ ๊ฒ๊ณผ ๊ฐ๋๋ก ์ค์ ํ ๊ฒฝ์ฐ, ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ ํฐ ์๋ ๋ชจ์ฌ๋ ํํฐ๋ง ๋ ์ง์ ์์น๋ชจ์ฌ์ ์๋ฃจ์
๊ณผ ์๋นํ ์ ์ผ์นํ์๋ค. ํํธ, ๋ฒฝ ๋จ์ ๊ฒฉ์ ํฌ๊ธฐ๊ฐ ํ๋ จ๋ฐ์ดํฐ์ ๊ฒ๊ณผ ๋ค๋ฅธ ๊ฒฝ์ฐ, ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ ์ฑ๋ฅ์ด ์ ํ๋์์ผ๋, ํฐ ์๋ ๋ชจ์ฌ์ ๊ฒฉ์ ํฌ๊ธฐ๋ณด๋ค ๊ฒฉ์ ํฌ๊ธฐ๊ฐ ํฐ ๊ทธ๋ฆฌ๊ณ ์์ ํ์ต๋ฐ์ดํฐ๋ฅผ ํ๊บผ๋ฒ์ ์ธ๊ณต์ ๊ฒฝ๋ง ํ์ต์ ์ฌ์ฉํ๊ฒ ๋๋ฉด ์ข์ ์ฑ๋ฅ์ ๋ณด์ฌ์ฃผ์๋ค.
ํํฅ ๊ณ๋จ ์ฃผ์ ๋๋ฅ ์ ๋์ ๊ฒฝ์ฐ, Reh = 5100์ ํํฐ๋ง ๋ ์ง์ ์์น๋ชจ์ฌ ๋ฐ์ดํฐ๋ฒ ์ด์ค๋ฅผ ์ฌ์ฉํ์ฌ ์ธ๊ณต์ ๊ฒฝ๋ง ๊ธฐ๋ฐ SGS ๋ชจ๋ธ์ ๊ฐ๋ฐํ์๋ค. ์ธ๊ณต์ ๊ฒฝ๋ง์ ์
๋ ฅ๋ณ์๋ก๋, ๋๋ฅ ์ฑ๋ ์ ๋์ ํฐ ์๋ ๋ชจ์ฌ์์ ์์ ์ ์ด๊ณ ์ข์ ์ฑ๋ฅ์ ๋ณด์ฌ์ค, ๋จ์ผ ๊ฒฉ์์ ์ ํํฐ๋ง ๋ ์๋๊ธฐ์ธ๊ธฐ ๊ทธ๋ฆฌ๊ณ ์๋๋ณํ๋ฅ ์ ๊ฐ๊ฐ ์ํํด๋ณด์๋ค. Reh = 5100์์ ํฐ ์๋ ๋ชจ์ฌ๋ฅผ ์ํํ ๊ฒฐ๊ณผ, ๋ ๊ฐ์ ์
๋ ฅ๋ณ์๋ก ๊ฐ๊ฐ ํ์ต๋ ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ ๋ชจ๋ ์ฌ๋ถ์ฐฉ ๊ธธ์ด ๋ฐ ๋๋ฅ ์ญ๋๋์ ๋ํด์, ๊ฐ์ฅ ๋๋ฆฌ ์ฌ์ฉ๋๋ ๋์ Smagorinksy ๋ชจ๋ธ(DSM)๊ณผ ๋น๊ตํ์ฌ ์ข์ ์์ธก ์ฑ๋ฅ์ ๋ณด์๋ค. ์๋๋ณํ๋ฅ ์ ์
๋ ฅ๋ณ์๋ก ํ๋ ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ Reh = 24000์ ํฐ ์๋ ๋ชจ์ฌ์ ์ ์ฉํ ๊ฒฐ๊ณผ, DSM์ ์ฌ์ฉํ ํฐ ์๋ ๋ชจ์ฌ์ ๋น๊ตํ์ฌ ์ฌ์ ํ ์ข์ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ฌ์ฃผ์๋ค. ๋ง์ง๋ง์ผ๋ก, ํํฅ ๊ณ๋จ ๋ชจ์๋ฆฌ์ ํญ์ด ์ค์น๋ ์ ๋์ ๋ํ ํฐ ์๋ ๋ชจ์ฌ๋ฅผ ์ํํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ, SGS ๋ชจ๋ธ์ ์ฌ์ฉํ์ง ์์ ๊ฒฝ์ฐ์๋, ํ๊ท ์๋์ ๋๋ฅ์ญ๋๋์ ๋ํด ๊ธฐ์กด ์คํ๊ฒฐ๊ณผ ๋ฐ DSM์ ์ฌ์ฉํ LES์ ๋งค์ฐ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์์ผ๋, ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ DSM๊ณผ ์ ์ฌํ ์ ๋์์ธก ์ฑ๋ฅ์ ๋ณด์ฌ์ฃผ์์ผ๋ฉฐ, ์ฌ๋ถ์ฐฉ ๊ธธ์ด ๊ฐ์๋์ ๊ฒฝ์ฐ, ์ธ๊ณต์ ๊ฒฝ๋ง ๋ชจ๋ธ์ด DSM๋ณด๋ค ์คํ๊ฐ๊ณผ ๋ ์ ์ผ์นํ์๋ค.Part I Modeling of the subgrid-scale stress with a neural network: application to turbulent channel flow 1
1 Introduction 2
2 Numerical details 9
2.1. Neural-network-based SGS model 9
2.2. Details of DNS and input and output variables 14
3 Results 23
3.1. A priori test 24
3.2. A posteriori test 30
3.3. LES with a grid resolution different from that of trained data 46
4 Conclusions 54
Part II Modeling of the subgrid-scale stress with a neural network: application to turbulent flow over a backward-facing step 56
1 Introduction 57
2 Computational details 62
2.1. Outline of the NN-based SGS model 62
2.2. Details of DNS for training data 64
2.2.1. Computational domain and grid spacing 64
2.2.2. Boundary conditions and numerical methods 65
2.2.3. Filtered DNS flow fields 66
2.3. Training details and hyperparameter optimization 72
3 LES of flow over a backward-facing step at Reh = 5100 79
3.1. Computational details 79
3.2. Results and discussions 81
3.2.1. LES51GR case 81
3.2.2. LES51GC case 90
4 LES of controlled backward-facing-step flow by multiple taps 96
4.1. Computational details 97
4.2. Results 103
5 Concluding remarks 118
References 122
Appendix 133
A Parametric study on the neural-network-based SGS model in turbulent channel flow 133
B Normalization method based on a resolved-scale dissipation toward a universal NN-based SGS model 158
C Computational details for DNS of a forced homogeneous isotropic turbulence 164
D SGS stress from NN model in laminar shear flow 166
Abstract (in Korean) 168๋ฐ
Ab-initio study
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๊ณต๊ณผ๋ํ ์ฌ๋ฃ๊ณตํ๋ถ, 2021.8. ํฉ๋๋ฌธ.Using ab-intio calculations, the origin of charge enhanced kinetic phenomena in various systems are studied.
To simulate the metals, as a model system, Au(111) slab model is used. When Au(111) is positively charged, the coulomb repulsion generated by surface excess charge. Then the slab thickness expanded to release the residual stress. Because of this expansion, the stacking fault nucleation barrier is decreased. This means the plastic deformation is enhanced by excess positive charging. The effects of vacuum thickness and layer thickness are also investigated.
To simulate the ceramics, as a model system, ฮฑ-Al2O3 is used. When the carrier concentration is changed, both for positive and negative charging, the activation barrier, the stacking fault energy, and the required shear stress to create the stacking fault are decreased. Negative charging has bigger effect in the basal slip and positive charging has bigger effect in the pyramidal slip. The difference in GSF energy upon charging in two types of prismatic slips are small compared to that of basal and pyramidal slips.
By using ab-initio total-energy and electronic-structure calculations based on the density functional theory, the adsorption and diffusion properties of positively charged Au+ and negatively charged Au- adatoms on defect-free MgO(100) surfaces were investigated, in comparison with the case of charge-neutral Au0 on MgO(100). The most stable adsorption site of Au+ on MgO(100) is the atop O site, in agreement with that of Au0, whereas the most stable adsorption site of Au- on MgO(100) is the atop Mg site. The surface diffusion barrier of Au+ on MgO(100) is 0.30 eV, larger than that (0.25 eV) of Au0. For Au-, the surface diffusion barrier is as low as 0.03 eV. Further detailed analyses of the charge rearrangement, the Bader charges, the electronic structures, and the characteristics of the atomic bonds were also performed. These results exhibit the significant roles of the charge states of Au adatoms in the adsorption and diffusion properties of Au on MgO(100).
By using ab-initio calculations, the adsorption and diffusion properties of charged Au dimers (Au2+ and Au2-) on MgO(100) surfaces were investigated and compared with those of the charge-neutral dimer (Au20) on MgO(100). The most favored adsorption structure of Au2+ on MgO(100) is the upright dimer on a surface O atom in agreement with that of Au20. The surface diffusion of Au2+ on MgO(100) occurs by the leapfrog process with a barrier height of 0.42 eV lower than that of Au20 (0.69 eV). The most stable adsorption structure of Au2- is the flat-lying dimer on two surface Mg atoms. The surface diffusion of Au2- can proceed by the hopping and walking processes with the barrier height in the range of 0.10-0.15 eV, which is much lower than the diffusion barriers of Au2+ and Au20. Furthermore, detailed information on the electronic structures and charge distribution of Au20, Au2+, and Au2- are also presented.
Vibrational spectra of charge-neutral and charged Au and Au2 on MgO(100) were investigated using ab-initio density functional perturbation theory. The calculated vibrational spectra showed vibrational features associated with the charge states of Au and Au2 on MgO(100). Further analyses of surface in-plane and normal phonon modes of Au and Au2 on MgO(100) were performed to extract vibrational features involving the Au modes. These features provide important information for experimentally explaining the charge states of Au and Au2 on MgO(100).์ ์ผ์๋ฆฌ ๊ณ์ฐ์ ์ฌ์ฉํ์ฌ ๋ค์ํ ์์คํ
์์ ์ฌ๋ฃ์ ํ์ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค.
๊ธ์์ ์๋ฎฌ๋ ์ด์
ํ๊ธฐ ์ํด ๋ชจ๋ธ ์์คํ
์ผ๋ก์ Au(111) ์ฌ๋๋ธ ๋ชจ๋ธ์ ์ฌ์ฉํ์๋ค. Au(111)๊ฐ ์์ ์ ํ๋ฅผ ๋ ๋ฉด ํ๋ฉด ๊ณผ์ ํ์ ์ํด ์ฟจ๋กฑ ๋ฐ๋ฐ์ด ๋ฐ์ํ๋ค. ๋๋ฌธ์ ์ฌ๋๋ธ ๋๊ป๊ฐ ํ์ฅ๋๋ฉฐ ์๋ฅ ์๋ ฅ์ด ๊ฐ์ํ๋ค. ์ด๋ฌํ ํ์ฅ์ผ๋ก ์ธํด ์ ์ธต ๊ฒฐํจ ํ์ฑ ์ฅ๋ฒฝ์ด ๊ฐ์ํ๊ฒ ๋๋ค. ์ด๋ ํ์ ์ด ํ๋ผ์คํฑ ๋ณํ์ ์ด์งํ๋ค๋ ๊ฒ์ ์๋ฏธํ๋ค.
์ธ๋ผ๋ฏน์ ์๋ฎฌ๋ ์ด์
ํ๊ธฐ ์ํด ๋ชจ๋ธ ์์คํ
์ผ๋ก์ ฮฑ-Al2O3๊ฐ ์ฌ์ฉ๋์๋ค. ์บ๋ฆฌ์ด ๋๋๋ฅผ ๋ณ๊ฒฝํ๋ฉด ์ ์ ํ์ ์ ์ ํ ๋ชจ๋ ํ์ฑํ ์ฅ๋ฒฝ, ์ ์ธต ๊ฒฐํจ ์๋์ง ๋ฐ ์ ์ธต ๊ฒฐํจ์ ์์ฑํ๋ ๋ฐ ํ์ํ ์ ๋จ ์๋ ฅ์ด ๊ฐ์ํ๋ค. ์์ ํ๋ Basal ์ฌ๋ฆฝ์์, ์์ ํ๋ Pyramidal ์ฌ๋ฆฝ์์ ๋ ํฐ ํจ๊ณผ๋ฅผ ๋ธ๋ค. ๋ ์ข
๋ฅ์ Prismatic ์ฌ๋ฆฝ์์ ํ์ ๋ ๋์ GSF ์๋์ง์ ์ฐจ์ด๋ ๊ธฐ์ด ์ฌ๋ฆฝ๊ณผ ํผ๋ผ๋ฏธ๋ ์ฌ๋ฆฝ์ ์๋์ง์ ๋น๊ตํ์ ๋ ์๋ค.
๋ฐ๋ ๊ธฐ๋ฅ ์ด๋ก ์ ๊ธฐ์ดํ Ab-initio ์ด ์๋์ง ๋ฐ ์ ์ ๊ตฌ์กฐ ๊ณ์ฐ์ ์ฌ์ฉํ์ฌ, MgO(100)์์ Au0, Au+ ๋ฐ Au- ๋ฅผ ๋น๊ตํ์ฌ ๊ธ adatom์ ํก์ฐฉ ๋ฐ ํ์ฐ ํน์ฑ์ ์กฐ์ฌํ์๋ค. MgO(100)์์ Au+์ ๊ฐ์ฅ ์์ ์ ์ธ ํก์ฐฉ ๋ถ์๋ Au0์ ํก์ฐฉ ๋ถ์์ ์ผ์นํ๋ O ์์ ์์ด๊ณ , ๋ฐ๋ฉด Au- ์ ๊ฐ์ฅ ์์ ์ ์ธ ํก์ฐฉ ๋ถ์๋ Mg ์์ ์์ด๋ค. MgO(100)์์ Au+์ ํ๋ฉด ํ์ฐ ์ฅ๋ฒฝ์ 0.30 eV๋ก, Au0(0.25 eV) ๋ณด๋ค ํฌ๋ค. Au-์ ๊ฒฝ์ฐ ํ๋ฉด ํ์ฐ ์ฅ๋ฒฝ์ 0.03 eV ๋ก ๋ฎ๋ค. ์ ํ ์ฌ๋ฐฐ์ด, Bader charge, ์ ์ ๊ตฌ์กฐ, ์์ ๊ฒฐํฉ์ ํน์ง์ ๋ํ ์์ธํ ๋ถ์๋ ์ํ๋์๋ค. ์ด๋ฌํ ๊ฒฐ๊ณผ๋ Au on MgO(100)์ ํก์ฐฉ ๋ฐ ํ์ฐ ์์ฑ์์ Au adatom์ ํ์ ์ํ์ ์ค์ํ ์ญํ ์ ๋ณด์ฌ์ค๋ค.
ab-initio ๊ณ์ฐ์ ์ฌ์ฉํ์ฌ, MgO(100) ํ๋ฉด์ ํ์ ๋ Au dimer(Au2+ ๋ฐ Au2-)์ ํก์ฐฉ ๋ฐ ํ์ฐ ํน์ฑ์ ์กฐ์ฌํ์๊ณ , Au20์ ํก์ฐฉ ๋ฐ ํ์ฐ ํน์ฑ์ ๋น๊ตํ์๋ค. MgO(100)์์ Au2+์ ๊ฐ์ฅ ์ ํธํ๋ ํก์ฐฉ ๊ตฌ์กฐ๋ Au20๊ณผ ์ผ์นํ๋ ํ๋ฉด O ์์์ ์ง๋ฆฝ ๊ตฌ์กฐ์ด๋ค. MgO(100)์์ Au2+์ ํ๋ฉด ํ์ฐ์ Au20(0.69eV)๋ณด๋ค ์ฅ๋ฒฝ ๋์ด๊ฐ 0.42eV ๋ฎ์ leapfrog ๋ฐฉ๋ฒ์ผ๋ก ๋ฐ์ํ๋ค. Au2-์ ๊ฐ์ฅ ์์ ์ ์ธ ํก์ฐฉ ๊ตฌ์กฐ๋ ๋ ๊ฐ์ ํ๋ฉด Mg ์์ ์์ ํํ๊ตฌ์กฐ์ด๋ค. Au2-์ ํ๋ฉด ํ์ฐ์ Au2+์ Au20์ ํ์ฐ ์ฅ๋ฒฝ๋ณด๋ค ํจ์ฌ ๋ฎ์ 0.10~0.15 eV ๋ฒ์์ ์ฅ๋ฒฝ ๋์ด๋ก Hopping ๋ฐ Walking ์ ์ํด ์งํ๋ ์ ์๋ค. ๋ํ, Au20, Au2+, Au2-์ ์ ์ ๊ตฌ์กฐ์ ์ ํ ๋ถํฌ์ ๋ํ ์์ธํ ์ ๋ณด๋ ์ ์๋๋ค.
MgO(100)์์ ํ์ ๋์ง ์์ ๊ฒ๊ณผ ํ์ ๋ Au์ Au2์ ์ง๋ ์คํํธ๋ผ์ ab-initio ๋ฐ๋ ํจ์ ์ญ๋ ์ด๋ก ์ ์ฌ์ฉํ์ฌ ์กฐ์ฌํ์๋ค. ๊ณ์ฐ๋ ์ง๋ ์คํํธ๋ผ์ MgO(100)์์ Au ๋ฐ Au2์ ํ์ ์ํ์ ๊ด๋ จ๋ ์ง๋ ํน์ง์ ๋ณด์๋ค. MgO(100)์ Au์ Au2์ ํ๋ฉด์ ์์ง ๋ฐ ํํ ๋ชจ๋์ ๋ํ ์ถ๊ฐ ๋ถ์์ ์ํํ์ฌ Au ๋ชจ๋๋ฅผ ํฌํจํ๋ ์ง๋ ๋ชจ๋๋ฅผ ์ถ์ถํ๋ค. ์ด๋ฌํ ๋ชจ๋๋ค์ MgO(100)์์ Au์ Au2์ ์ถฉ์ ์ํ๋ฅผ ์คํ์ ์ผ๋ก ์ค๋ช
ํ๋ ๋ฐ ์ค์ํ ์ ๋ณด๋ฅผ ์ ๊ณตํ๋ค.Chapter 1. Introduction 1
Chapter 2. Charging effects on mechanical property of Au 4
Chapter 3. Charging effects on mechanical property of Al2O3 16
Chapter 4. Charging effects on diffusion property of Au monomer on MgO(100) 32
Chapter 5. Charging effects on diffusion of Au dimer on MgO(100) 49
Chapter 6. Charging effects on the vibrational properties of Au and Au2 on MgO(100) 68
Bibliography 97
Abstract in Korean 101๋ฐ
The effect of introduction of single stock futures on spot market : the case of Korean stock market
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :๊ฒฝ์ ํ๋ถ,2009.2.Maste
Sports ่ฃฝ้ ๆฅญ ๆฏๆดๆฟ็ญ์ ๊ดํ ็ก็ฉถ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ํ์ ๋ํ์ :ํ์ ํ๊ณผ ํ์ ํ์ ๊ณต,1999.Maste
Tightly spiral bacteria์ ๊ฐ์ผ๋ ๋ผ์ง ์์ ์ ์ ๋ฅผ ์ด์ฉํ ๋ง์ฐ์ค ๊ฐ์ผ์คํ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์์ํ๊ณผ ์คํ๋๋ฌผ์ํ์ ๊ณต,2000.Maste
Listeria monocytogenes์ ์ํ ๋ง์ฐ์ค ์์ผ์ ๋ณ์ธ๋ก ๋ฐ ์ฌ๋ ์์ฅ ์ํผ์ธํฌ์ ๋ฉด์ญ ๋ฐ์
Thesis(doctoral)--์์ธ๋ํ๊ต ๋ํ์ :์์ํ๊ณผ ์คํ๋๋ฌผ์ํ์ ๊ณต,2005.Docto