2 research outputs found

    μœ μ „μž νŽΈμ§‘ κΈ°μˆ μ„ ν™œμš©ν•œ 세포 λ‚΄ μˆ™μ£Ό 인자의 μ •κ΅ν•œ ꡐ정 및 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€ μ œμ–΄μ— κ΄€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :농업생λͺ…κ³Όν•™λŒ€ν•™ 농생λͺ…곡학뢀(λ°”μ΄μ˜€λͺ¨λ“ˆλ ˆμ΄μ…˜μ „곡),2020. 2. ν•œμž¬μš©μž„μ •λ¬΅.μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€(AIV)λŠ” μ§€λ‚œ 수 μ‹­λ…„ κ°„ 전세계 κ°€κΈˆ μ‚°μ—…μ—μ„œ λ§‰λŒ€ν•œ 경제적 손싀을 μ΄ˆλž˜ν–ˆκ³ , μ΅œκ·Όμ—λŠ” μΈκ°„μ—κ²Œ 감염을 μΌμœΌμΌœμ„œ 사망을 μ΄ˆλž˜ν•  수 μžˆλŠ” 고병원성 μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€ (HPAI) μΆœν˜„μ— λŒ€ν•œ 우렀둜 μ‚¬νšŒμ  문제둜 λŒ€λ‘λ˜κ³  μžˆλ‹€. κ·Έλ™μ•ˆ λ°±μ‹  맀개 예방 및 μΉ˜λ£ŒλŠ” μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€λ₯Ό μ œμ–΄ν•˜λŠ” κ°€μž₯ 효율적인 λ°©λ²•μœΌλ‘œ μΈμ‹λ˜μ–΄ μ™”μ§€λ§Œ, μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€κ°€ 백신에 λΉ λ₯΄κ²Œ μ μ‘ν•˜κ³  μ§„ν™”ν•˜κ²Œ 됨에 따라 κ³„μ ˆλ³„ λ°œλ³‘μ— λŒ€μ‘ν•˜μ—¬ 백신을 μƒˆλ‘­κ²Œ κ°œλ°œν•΄μ•Ό ν•˜κΈ° λ•Œλ¬Έμ—, κ°€κΈˆλ₯˜μ—μ„œ λ°±μ‹  맀개 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μžμ˜ 예방 및 μΉ˜λ£Œμ— λŒ€ν•œ μ‹€μ§ˆμ  νš¨κ³Όκ°€ μ œν•œμ μΈ 상황이닀. ν•œνŽΈ, λ°”μ΄λŸ¬μŠ€λŠ” μƒν™œ μ£ΌκΈ° λ™μ•ˆ λ°”μ΄λŸ¬μŠ€ RNA의 볡제 및 전사 그리고 λ‹¨λ°±μ§ˆ λ²ˆμ—­μ„ μœ„ν•΄μ„œ μˆ™μ£Ό 세포 내에 μžˆλŠ” κ΄€λ ¨ μˆ™μ£Ό μΈμžλ“€μ„ λ°˜λ“œμ‹œ μ΄μš©ν•΄μ•Ό ν•˜κΈ° λ•Œλ¬Έμ—, λ°”μ΄λŸ¬μŠ€κ°€ ν•„μš”λ‘œ ν•˜λŠ” 세포 μˆ™μ£Ό 인자의 ν‘œμ ν™” 및 μ œμ–΄λŠ” μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ 볡제 및 증식을 μ œν•œ ν•  수 μžˆλŠ” ν˜μ‹ μ  μ „λž΅μœΌλ‘œ λ°±μ‹  맀개 μΉ˜λ£Œλ²•μ— λŒ€ν•œ λŒ€μ•ˆμœΌλ‘œ λŒ€λ‘ 되고 μžˆλ‹€. 졜근 CRISPR/Cas9 맀개 μœ μ „μž νŽΈμ§‘ μ‹œμŠ€ν…œμ˜ 기술적 μ§„λ³΄λ‘œ 인해 λͺ©ν‘œ μœ μ „μžμ— λŒ€ν•œ 맀우 효율적인 μœ μ „μž knockout 뿐만 μ•„λ‹ˆλΌ μ›ν•˜λŠ” μ„œμ—΄λ‘œ μ •ν™•ν•œ λ³€ν˜•μ΄ κ°€λŠ₯ν•˜κ²Œ λ˜μ—ˆλ‹€. μœ μ „μž νŽΈμ§‘ κΈ°μˆ μ„ 톡해 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€κ°€ μ΄μš©ν•˜λŠ” μˆ™μ£Ό 인자의 μ •ν™•ν•œ ꡐ정은 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€ μ €ν•­μ„± λ‹­μ˜ κ°œλ°œμ„ μœ„ν•œ ν˜μ‹ μ μΈ ν•΄κ²°μ±…μœΌλ‘œ μ£Όλͺ© λ°›κ³  μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œμ˜ 첫 번째 μ£Όμ œλŠ” CRISPR/Cas9 μ‹œμŠ€ν…œμ„ 맀개둜 λ‹­μ—μ„œ μœ μ „μž νŽΈμ§‘μ„ ν†΅ν•΄μ„œ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ 전사 ν™œμ„± 및 λ³΅μ œμ— κ΄€μ—¬ν•˜λŠ” ANP32 λ‹¨λ°±μ§ˆ ꡬ성원듀에 λŒ€ν•œ κΈ°λŠ₯적 쑰사λ₯Ό ν•˜λŠ” 것이닀. ANP32 λ‹¨λ°±μ§ˆ ꡬ성원 쀑 ν•˜λ‚˜ 인 ANP32AλŠ” 졜근 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ λ°”μ΄λŸ¬μŠ€ 전사 ν™œμ„±μ— λŒ€ν•œ μˆ™μ£Ό-특이적 μ œν•œ 인자둜 λ°ν˜€ μ‘Œλ‹€. ANP32AλŠ” 보쑴 된 ANP32 κ°€μ‘± ꡬ성원에 μ†ν•˜μ§€λ§Œ, λ°”μ΄λŸ¬μŠ€ 볡제 λ™μ•ˆ κΈ°λŠ₯적 역할은 μ•„μ§κΉŒμ§€ 뢈λͺ…ν™•ν•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ ANP32A 및 ANP32 λ‹¨λ°±μ§ˆμ˜ λ‹€λ₯Έ κ΅¬μ„±μ›λ“€μ˜ κΈ°λŠ₯적 역할을 μ‘°μ‚¬ν•˜κΈ° μœ„ν•΄ CRISPR/Cas9 맀개 μœ μ „μž νŽΈμ§‘ μ‹œμŠ€ν…œμ„ μ‚¬μš©ν•˜μ—¬ ν•˜μ—¬ λ‹­ ANP32Aλ₯Ό ν‘œμ ν™” (targeting) ν•˜μ˜€λ‹€. λ¨Όμ €, cANP32A μœ μ „μžκ°€ knockout 된 DF-1 클둠과 HDR-mediated μ •λ°€ μœ μ „μž ꡐ정을 톡해 λ‹­ ANP32A의 λ‹€μ„― 번째 exon이 κ²°μ—¬λœ 클둠을 ν™•λ¦½ν•˜μ˜€λ‹€. λ‹€μŒμœΌλ‘œ, cANP32A의 knockout λ˜λŠ” μ •λ°€ κ΅μ •μœΌλ‘œ 인해 λ°”μ΄λŸ¬μŠ€μ˜ 전사 ν™œμ„± 및 λ³΅μ œκ°€ ν˜„μ €ν•˜κ²Œ κ°μ†Œλ˜μ—ˆλ‹€λŠ” 것을 μž…μ¦ν•˜μ˜€λ‹€. λ˜ν•œ, λ‹­ AN32 κ΅¬μ„±μ›μ˜ μœ μ „μž knockdown 및 κ³Όλ°œν˜„ μ‹€ν—˜μ„ ν†΅ν•΄μ„œ cANP32B 및 cANP32Eκ°€ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μžμ˜ 전사 ν™œμ„± 및 λ³΅μ œμ— κ΄€μ—¬ν•˜μ§€ μ•ŠλŠ” 것을 λ°ν˜”λ‹€. λ‹­μ—μ„œλŠ” ANP32B 및 ANP32Eκ°€ μ•„λ‹ˆλΌ, ANP32A만이 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μžμ˜ λ°”μ΄λŸ¬μŠ€ 전사 ν™œμ„±μ„ μ§€μ§€ν•˜λŠ” 데 μ€‘μš”ν•œ μ—­ν• μ„ν•œλ‹€λŠ” 것을 보여 μ£Όμ—ˆλ‹€. ν₯λ―Έλ‘­κ²Œλ„, ANP32Aκ°€ κ²°ν•λœ λ‹­ μ„Έν¬μ—μ„œ 인간 ANP32 κ°€μ‘± λͺ¨λ“  κ΅¬μ„±μ›μ˜ 곡동 λ°œν˜„μ€ μ‘°λ₯˜ 특이적 PB2-672E에 λŒ€ν•΄ κ°μ†Œ 된 λ°”μ΄λŸ¬μŠ€ 전사 ν™œμ„±μ„ 초래 ν•˜μ˜€λ‹€. μ΄λŠ” 인간 ANP32C, ANP32D 및 ANP32Eκ°€ 인간 ANP32A 및 ANP32B와 λŒ€μ‘°μ μœΌλ‘œ λ°”μ΄λŸ¬μŠ€ 전사 ν™œμ„±μ— λŒ€ν•œ μ–΅μ œ 효과λ₯Ό κ°–κΈ° λ•Œλ¬ΈμΈ κ²ƒμœΌλ‘œ λ°ν˜€μ‘Œλ‹€. λ³Έ 연ꡬ κ²°κ³Όλ₯Ό μ’…ν•©ν•΄ λ³Ό λ•Œ, λ‹­κ³Ό μΈκ°„μ˜ 각기 λ‹€λ₯Έ ANP32 κ°€μ‘± κ΅¬μ„±μ›μœΌλ‘œ 인해 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ 전사 ν™œμ„± 및 λ³΅μ œμ— λŒ€ν•΄ μ„œλ‘œ λ‹€λ₯Έ 영ν–₯을 λ―ΈμΉœλ‹€λŠ” 것을 λ°ν˜”λ‹€. μ΄λŠ” μ‘°λ₯˜ μΈν”Œλ£¨μ—”μžμ˜ 쒅에 λ”°λ₯Έ 차별적인 ν™œμ„± 양상이 ANP32 κ°€μ‘± κ΅¬μ„±μ›μ˜ 차별적인 κΈ°λŠ₯ 및 μ „λ°˜μ μΈ λŠ₯λ ₯에 μ˜ν•΄μ„œ 쒌우 될 수 μžˆμŒμ„ μ‹œμ‚¬ ν•œλ‹€. μ΄μ–΄μ„œ, λ°”μ΄λŸ¬μŠ€μ˜ 전사 ν™œμ„± 및 λ³΅μ œμ— λŒ€ν•œ ANP32 κ°€μ‘± κ΅¬μ„±μ›μ˜ 차별적인 역할에 λŒ€ν•œ 연ꡬλ₯Ό 기반으둜, λ°”μ΄λŸ¬μŠ€μ˜ 전사 ν™œμ„± 지원에 λŒ€ν•œ 27개 μ•„λ―Έλ…Έμ‚° μž”κΈ° (ANP32 λ‹¨λ°±μ§ˆμ˜ 149-175 번째 μ„œμ—΄)의 κΈ°λŠ₯적 역할을 μ‘°μ‚¬ν–ˆλ‹€. μ΅œκ·Όμ— λ°œν‘œλœ 연ꡬ 결과에 λ”°λ₯΄λ©΄, λ‹­ ANP32AλŠ” 149-175 μž”κΈ°μ—μ„œ 볡제된 μ‘°λ₯˜ 특이적 33개의 μ•„λ―Έλ…Έμ‚° μž”κΈ°(176-208 번째 μ„œμ—΄)λ₯Ό μΆ”κ°€λ‘œ 가지고 있기 λ•Œλ¬Έμ—, 포유 동물과 달리 닭을 ν¬ν•¨ν•œ λ‹€μˆ˜μ˜ μ‘°λ₯˜ 쒅은 PB2-627 μž”κΈ° 특이적 전사 ν™œμ„± μ œν•œμ„ 극볡할 수 μžˆλŠ” κ²ƒμœΌλ‘œ λ°ν˜€ μ‘Œλ‹€. λ‹€μ‹œ 말해, ANP32A μœ μ „μžμ— 좔가적인 33개 μž”κΈ°κ°€ μžˆλŠ” λ‹­κ³Ό 같은 μ‘°λ₯˜ μ’…μ—μ„œλŠ” μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€κ°€ 증식을 μž˜ν•  수 μžˆμ§€λ§Œ 그렇지 μ•Šμ€ 포유λ₯˜ μ’…μ—μ„œλŠ” μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€κ°€ 포유λ₯˜ 특이적인 적응적 λŒμ—°λ³€μ΄κ°€ μΌμ–΄λ‚˜κΈ° μ „κΉŒμ§„ 증식을 잘 ν•˜μ§€ λͺ»ν•œλ‹€. 이처럼 ANP32A λ‹¨λ°±μ§ˆμ—μ„œ 좔가적인 33개 μž”κΈ°μ˜ 역할이 μ€‘μš”ν•˜λ‹€λŠ” 것이 μ•Œλ €μ‘Œμ§€λ§Œ, μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ 전사 ν™œμ„± 및 λ³΅μ œμ— μžˆμ–΄, λ‹­κ³Ό μΈκ°„μ—μ„œ κ³΅ν†΅μ μœΌλ‘œ μ‘΄μž¬ν•˜λŠ” ANP32A 및 λ‹€λ₯Έ ANP32 κ΅¬μ„±μ›λ“€μ˜ 27개 μž”κΈ°μ˜ λΆ„μž 이해 및 κΈ°λŠ₯적 역할은 아직 μ™„μ „νžˆ λ°ν˜€μ§€μ§€ μ•Šμ•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ, hANP32Aμ—μ„œ 27개 μž”κΈ°μ˜ κ²°μ‹€ λ˜λŠ” hANP32Cμ—μ„œ hANP32A둜의 27개 μž”κΈ°μ˜ κ΅ν™˜μ€ vPol ν™œμ„±μ„μ§€μ§€ν•˜λŠ” λŠ₯λ ₯을 μƒμ‹€ν•˜λŠ” 반면, ANP32Aμ—μ„œ ANP32C둜 27개 μž”κΈ°μ˜ κ΅ν™˜μ€ λ°”μ΄λŸ¬μŠ€ 전사 ν™œμ„±μ˜ 지지 λŠ₯λ ₯을 λΆ€μ—¬ν•œλ‹€λŠ” 것을 발견 ν•˜μ˜€λ‹€. ANP32A와 ANP32C μ‚¬μ΄μ˜ λ‹¨λ°±μ§ˆ μ„œμ—΄ 비ꡐλ₯Ό ν†΅ν•΄μ„œ, 149D 및 152D μž”κΈ°κ°€ λ°”μ΄λŸ¬μŠ€ 전사 ν™œμ„± 지지에 κ²°μ •μ μœΌλ‘œ κ΄€μ—¬ 함을 확인 ν•˜μ˜€κ³ , 149D 및 152D μž”κΈ°κ°€ vPol ν™œλ™μ„ μ§€μ›ν•˜κΈ° μœ„ν•΄ 각각 μˆ˜μ†Œ κ²°ν•© 및 μ •μ „κΈ° μƒν˜Έ μž‘μš©μœΌλ‘œ κ΄€μ—¬ν•˜λŠ” 것을 λ°ν˜€λƒˆλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μœ μ „μž νŽΈμ§‘ 기술 맀개 μ •λ°€ ꡐ정을 톡해 λ‹­ ANP32A의 D149Y 및 D152둜의 μ •κ΅ν•œ μΉ˜ν™˜ λŒμ—°λ³€μ΄κ°€ λ°”μ΄λŸ¬μŠ€ 볡제의 μœ μ˜λ―Έν•œ κ°μ†Œλ₯Ό μ΄ˆλž˜ν•œλ‹€λŠ” 것을 μž…μ¦ ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬λŠ” ANP32A 및 ANP32 κ΅¬μ„±μ›λ“€μ˜ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž 전사 ν™œμ„± 및 λ³΅μ œμ— λŒ€ν•œ λΆ„μžμ  역할에 λŒ€ν•œ 심도 μžˆλŠ” 이해λ₯Ό λ°”νƒ•μœΌλ‘œ, μœ μ „μž νŽΈμ§‘ κΈ°μˆ μ„ ν™œμš©ν•˜μ—¬ λ‹­ ANP32Aλ₯Ό μ •λ°€ν•˜κ²Œ κ΅μ •ν•¨μœΌλ‘œμ¨ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž μ €ν•­μ„± 닭을 κ°œλ°œν•˜λŠ” 데 ν™œμš© 될 수 μžˆμ„ κ²ƒμœΌλ‘œ νŒλ‹¨ λœλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, λ‹­ μ„Έν¬μ—μ„œ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ λ°”μ΄λŸ¬μŠ€ μ„± λ‹¨λ°±μ§ˆμ˜ μˆ˜μ†‘μ— μ–΄λ–€ importin Ξ± κ°€μ‘± ꡬ성원이 κ΄€μ—¬ ν•˜λŠ”μ§€λ₯Ό 쑰사 ν•˜μ˜€λ‹€. μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€λŠ” μˆ™μ£Ό 감염 μ‹œ, ν•΅μ—μ„œ λ°”μ΄λŸ¬μŠ€ μœ μ „μ²΄μ˜ 초기 전사 및 볡제λ₯Ό μœ„ν•΄ ν•„μ—°μ μœΌλ‘œ μˆ™μ£Ό μ„Έν¬μ˜ 세포 μˆ˜μ†‘ 체λ₯Ό μ΄μš©ν•œλ‹€. Importin Ξ± ꡬ성원은 포유 λ™λ¬Όμ—μ„œ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ ν•΅μœΌλ‘œ 이동에 κ΄€μ—¬ν•˜λŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ Έ μ™”λŠ”λ°, μ‘°λ₯˜μ™€ 포유λ₯˜ μ‚¬μ΄μ˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ μ’…κ°„ μ œν•œμ€ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ importin Ξ± κ°€μ‘± κ΅¬μ„±μ›μ˜ 차별적 μ΄μš©μ— μ˜ν•΄ μ•ΌκΈ° 될 수 μžˆλ‹€κ³  λ³΄κ³ λ˜μ—ˆλ‹€. μΈκ°„μ—μ„œ, μ‘°λ₯˜-특이적 μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€λŠ” PB2 및 NP의 ν•΅μœΌλ‘œμ˜ 이동을 μœ„ν•΄ importin Ξ±3 λ₯Ό μ‚¬μš©ν•˜λŠ” λ°˜λ©΄μ—, 포유λ₯˜-특이적 μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€λŠ” importin Ξ±3 λŒ€μ‹  importin Ξ±7을 μš°μ„ μ μœΌλ‘œ μ΄μš©ν•œλ‹€. κ·ΈλŸ¬λ‚˜ 인간 μˆ™μ£Όμ™€λŠ” 달리, λ‹­ μ„Έν¬μ—μ„œ importin Ξ± 특이적 μΉœν™”μ„±μ€ μ—¬μ „νžˆ λ°ν˜€μ§€μ§€ μ•Šμ•˜λ‹€. λ”°λΌμ„œ, CRISPR/Cas9맀개 μœ μ „μž νŽΈμ§‘ μ‹œμŠ€ν…œμ„ μ‚¬μš©ν•˜μ—¬ λ‹­ importin Ξ± κ°€μ‘± ꡬ성원을 ν‘œμ ν™”ν•¨μœΌλ‘œμ¨, λ‹­ μˆ™μ£Ό μ„Έν¬μ—μ„œ λ°”μ΄λŸ¬μŠ€ μˆ˜μ†‘μ—μ„œ importin Ξ± κ°€μ‘± κ΅¬μ„±μ›μ˜ κΈ°λŠ₯적 역할을 ꡬλͺ…ν•˜μ˜€λ‹€. 결과적으둜, importin Ξ±1 및 importin Ξ±4 κ°€ NP λ‹¨λ°±μ§ˆμ˜ μˆ˜μ†‘μ—λŠ” κ΄€μ—¬ν•˜μ§€ μ•ŠλŠ” κ²ƒμœΌλ‘œ λ³΄μ΄λ‚˜ PB2 λ‹¨λ°±μ§ˆμ˜ 세포 μˆ˜μ†‘μ—λŠ” μ–΄λŠ 정도 κ΄€μ—¬ν•œλ‹€λŠ” 것을 발견 ν•˜μ˜€λ‹€. λ”°λΌμ„œ, λ³Έ 연ꡬ κ²°κ³ΌλŠ” λ‹­μ—μ„œ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ 세포 μˆ˜μ†‘μ— importin Ξ± κ°€μ‘± κ΅¬μ„±μ›μ˜ κΈ°λŠ₯적 역할에 λŒ€ν•œ κΉŠμ€ 이해λ₯Ό 톡해, ν•­ λ°”μ΄λŸ¬μŠ€ μ•½λ¬Ό 개발 및 μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž μ €ν•­μ„± λͺ¨λΈ 동물 κ°œλ°œμ— ν™œμš© 될 수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€. λ³Έ 연ꡬ 결과듀을 λ°”νƒ•μœΌλ‘œ, CRISPR/Cas9 μ‹œμŠ€ν…œμ„ 톡해 ANP32A 및 importin Ξ± κ°€μ‘± ꡬ성원과 같은 μˆ™μ£Ό 인자의 μœ μ „μž νŽΈμ§‘ λ˜λŠ” μ •λ°€ ꡐ정에 μ„±κ³΅ν•˜μ˜€μœΌλ©°, 이λ₯Ό ν†΅ν•΄μ„œ λ‹­ μˆ™μ£Ό μ„Έν¬μ—μ„œ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž λ°”μ΄λŸ¬μŠ€μ˜ 볡제 및 μ„±μž₯이 μ œν•œ 될 수 μžˆμŒμ„ κ²€μ¦ν•˜μ˜€λ‹€. λ³Έ 연ꡬ 결과듀은 μ‘°λ₯˜ μ’…μ—μ„œ λ°”μ΄λŸ¬μŠ€μ˜ 감염 및 λ°œλ³‘ λ©”μ»€λ‹ˆμ¦˜μ— λŒ€ν•œ κΉŠμ€ 이해λ₯Ό ν–₯상 μ‹œν‚¬ 뿐만 μ•„λ‹ˆλΌ, ν™•λ¦½λœ μœ μ „μž νŽΈμ§‘ μ‹œμŠ€ν…œμ„ ν™œμš©ν•˜μ—¬ 산업계 및 ν•™κ³„μ—μ„œ ν™œμš© κ°€λŠ₯ν•œ μ‘°λ₯˜ μΈν”Œλ£¨μ—”μž μ €ν•­μ„± μ‘°λ₯˜ λͺ¨λΈμ„ κ°œλ°œν•˜λŠ”λ° κΈ°μ—¬ ν•  수 μžˆμ„ κ²ƒμœΌλ‘œ νŒλ‹¨ λœλ‹€.Avian influenza virus (AIV) outbreaks have not only caused enormous economic losses in the poultry industry worldwide, but they also have a high potential to cause infection and lethality in humans, which has aroused concerns about the emergence and pandemic spread of high pathogenic avian influenza virus (HPAI). Currently, vaccine-mediated prevention and therapy is the most efficient way to control the influenza virus. However, vaccination strategies against AIV have limited practical effectiveness, as vaccines must be reformulated in response to each seasonal outbreak due to the high plasticity and rapid evolution of AIV. Since viruses must utilize the host cellular machinery during their lifecycle to produce progeny, targeting of the cellular host factors required by the virus might serve as an alternative strategy to vaccination for controlling AIV replication and growth. Recent technological advances in genome editing afforded by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system have enabled highly efficient and precise modification and targeted disruption of genes of interest. The precise modification of host factors used by AIV via genome editing technology is considered an innovative solution for the development of AIV-resistant chickens. The first study was performed to investigate the functional roles of species-specific host restriction factor acidic nuclear phosphoprotein 32 family member proteins (ANP32) in viral polymerase activity and replication of AIVs through CRISPR/Cas9-mediated genome editing system in chicken. The ANP32A, one of ANP32 protein members, has been identified as the host restriction factor for the viral polymerase (vPol) activity of AIVs. Although ANP32A belongs to the conserved ANP32 family, the functional roles of which during viral replication remain unclear. In this study, targeted knockout of chicken ANP32A was performed using CRISPR/Cas9-mediated genome editing to examine the functional roles of ANP32A and other members of the ANP32 family. First, the cANP32A-knockout DF-1 clones and the fifth exon of cANP32A modified DF-1 clones via homology-directed repair (HDR) were established. Next, it was revealed that knockout or precise modification of cANP32A resulted in a significant reduction in AIV replication. Furthermore, via knockdown and enforced expression experiments, cANP32B and cANP32E are not involved in AIV replication. Intriguingly, co-expression of all of the human ANP32 family members in cANP32A-lacking DF-1 cells resulted in reduced vPol activity that depended especially on the PB2-Glu627 (PB2-E627) rather than on the PB2-Lys627 (PB2-K627). It was notable that chicken ANP32A only, not ANP32B and ANP32E, plays a pivotal role in supporting vPol activity of AIVs. Furthermore, the human ANP32C, ANP32D, and ANP32E have suppressive effects on vPol activity in contrast to human ANP32A and ANP32B. These findings suggest that each chicken and human ANP32 family member had different effects on vPol activity, implying that species-specific vPol activity of AIVs could be caused by the differential functions and overall competency of ANP32 family members. Based on the differential role of ANP32 family members in supporting of vPol activity, the functional role of the 27 residues (149-175 residues of ANP32 proteins) in supporting of vPol activity was further investigated. It was reported that ANP32A plays a pivotal role in host range restriction of the vPol AIVs between birds and mammals since chicken ANP32A additionally contains the 27 residues (182-208 residues) duplicated from 149-175 residues. However, the molecular understanding and functional role of these 27 residues in supporting of viral polymerase activity of AIVs have not been fully elucidated yet. It was found that the deletion of 27 residues from hANP32A or swapping of the 27 residues from hANP32C to hANP32A lost the competency to support the vPol activity, whereas swapping of the 27 residues from ANP32A to ANP32C confer the supporting competency in vPol activity. From the pairwise comparison between ANP32A and ANP32C, it was demonstrated that the both of Asp149 (D149) and Asp152 (D152) residues are critically involved in supporting of vPol activity independent of PB2 627 residues. Furthermore, it was found that the D149 and D152 residues are involved in hydrogen bond and electrostatic interaction with viral proteins for supporting of vPol activity, respectively. In addition, via co-immunoprecipitation assay, it was revealed that mutation of these residues resulted in a significant reduction of the protein interaction between ANP32A and vPol. Finally, it was demonstrated that HDR-mediated precise substitution of D149Y and D152H of chicken ANP32A resulted in a significant reduction of viral replication. This study can contribute to understand the molecular insight of ANP32A function and develop the AIV-resistant chicken via precise modification of ANP32A with current genome editing technology. Next study was conducted to examine which of importin Ξ± family members are involved in the transportation of viral proteins of avian influenza virus in chicken DF-1 fibroblast cells. Influenza viruses inevitably utilize the cellular transporters for initial transcription and replication of their viral genome at nuclei of host cells upon host infection. The importin Ξ± family members have been known to be involved in nuclear import of influenza viruses in mammalian host. Furthermore, it was reported that interspecies restriction of influenza viruses between birds and mammals could be caused by differential utilization of the importin Ξ± family in different influenza virus strains, especially avian or mammalian-adapted viruses. In human hosts, avian viruses utilize importin Ξ±3 for nuclear import of PB2 and NP, whereas mammalian viruses preferentially exploit the importin Ξ±7 instead of importin Ξ±3. In contrast to human hosts, however, importin Ξ± specificities have not been yet identified in chicken cells. Therefore, chicken importin Ξ± family members was targeted by using the CRISPR/Cas9-mediated gene editing system to demonstrate the functional role of importin Ξ± family members in viral transportation and replication of AIVs in chicken host cells. It was found that importin Ξ±1 and importin Ξ±4 are mainly involved in cellular transportation of viral PB2, but not of NP proteins. These results provide a novel understanding of the functional roles of importin Ξ± family members in cellular transportation of influenza virus in chicken, and the implications for the development of antiviral drugs and strategy for generation of AIV-resistant animals. Based on the researches, this studies demonstrated that CRISPR/Cas9-mediated genome editing or precise modification of host factors such as ANP32A and importin Ξ± family members could restrict the replication and growth of AIVs in the chicken host cell. These findings suggest that our genome editing system could be utilized for the development of AIV-resistant chicken system, and could contribute to facilitate a profound understanding of virus infection and pathogenesis in avian species, providing the chances to establish a novel avian model for academic fields as well as an industrial area. Based on the researches, it was demonstrated that CRISPR/Cas9-mediated genome editing or precise modification of host factors such as ANP32A and importin Ξ± family members could restrict the replication and growth of AIVs in the chicken host cell. These studies suggest that the genome editing system could be utilized for the development of AIV-resistant chicken system, and could contribute to facilitate a profound understanding of virus infection and pathogenesis in avian species, providing the chances to establish a novel avian model for academic fields as well as an industrial area.CHAPTER 1. GENERAL INTRODUCTION................................................... 1 CHAPTER 2. LITERATURE REVIEW.......................................................... 6 1. Influenza Virus……………................................................................ 7 1.1. Classification and Structure of Influenza Virus.................................. 7 1.2. Life cycle of Influenza Virus.............................................................. 8 1.3. Cellular Host Supporting Factor of Influenza Virus........................... 10 1.4. Cellular Host Restriction Factor of Influenza Virus............................ 12 1.5. Multiple Role of ANP32 Family Members........................................ 15 1.6. Functional Role of ANP32A in Influenza Virus………........................ 18 1.7. Transportation of Influenza Virus via Importin Ξ± Family Members ..... 20 2. Transgenic and Genome Editing System for Genetic Modification ... 22 2.1. Transgenic System ........................................................................ 22 2.2. Site-specific Homologous Recombination System…........................ 24 2.3. Genome Editing System ............................................................... 26 3. PGC-mediated Germline Modification Strategy…........................... 27 3.1. Production of Germline Chimeras via PGC...................................... 27 3.2. Transgenesis in Avian Species......................................................... 29 3.3. Genome Editing in Avian Species................................................... 31 3.4. Application of Genome Editing System in Birds…........................... 32 CHAPTER 3. HOST-SPECIFIC RESTRICTION OF AVIAN INFLUENZA VIRUS CAUSED BY DIFFERENTIAL DYNAMICS OF ANP32 FAMILY MEMBERS ..…............................................................. 36 1. Introduction ..................................................................................... 37 2. Materials and methods ..................................................................... 40 3. Results ............................................................................................. 47 4. Discussion ........................................................................................ 63 CHAPTER 4. ASP149 AND ASP152 IN CHICKEN AND HUMAN ANP32A PLAY AN ESSENTIAL ROLE IN INTERACTION WITH INFLUENZA VIRAL POLYMERASE .............................. 67 1. Introduction ..................................................................................... 68 2. Materials and methods ..................................................................... 71 3. Results ............................................................................................. 77 4. Discussion ........................................................................................ 93 CHAPTER 5. INHIBITION OF CELLULAR TRANSPORTATION OF AVIAN INFLUENZA VIRUS THROUGH CRISPR/CAS9-MEDIATED TARGETED DISRUPTION OF IMPORTIN Ξ±1 AND IMPORTIN Ξ±3 IN CHICKEN ................................................................................................................ 96 1. Introduction ..................................................................................... 97 2. Materials and methods ................................................................... 100 3. Results ........................................................................................... 106 4. Discussion ...................................................................................... 120 CHAPTER 6. GENERAL DISCUSSION ....................................................... 125 REFERENCES .......................................................................................... 129 SUMMARY IN KOREAN .......................................................................... 164Docto
    corecore