44 research outputs found

    ์ž…์ง€๊ฐˆ๋“ฑ์— ์žˆ์–ด ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ์—ญํ• ๊ณผ ํšจ๊ณผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ–‰์ •๋Œ€ํ•™์› : ํ–‰์ •ํ•™๊ณผ, 2014. 8. ๊น€์ˆœ์€.๋ณธ ์—ฐ๊ตฌ๋Š” ์ž…์ง€๊ฐˆ๋“ฑ๊ด€๋ฆฌ ๊ณผ์ •์—์„œ ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ์—ญํ• ๊ณผ ํšจ๊ณผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ๊ฐˆ๋“ฑ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์‹œ๋ฏผ์ฐธ์—ฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ ์ œ๋„์ ์œผ๋กœ๋„ ๋˜ํ•œ ์ฐธ์—ฌ๊ฐ€ ๋ณด์žฅ๋˜๊ณ  ์žˆ์Œ์—๋„ ์šฐ๋ฆฌ์‚ฌํšŒ์—์„œ ๊ฐˆ๋“ฑ์€ ์—ฌ์ „ํžˆ ์ง„ํ–‰์ค‘์ด๋ฉฐ ์˜คํžˆ๋ ค ๊ทธ ํญ์ด ๊นŠ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ฐˆ๋“ฑ์ด ๊ฐ–๊ณ  ์žˆ๋Š” ์ˆœ๊ธฐ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ตญ๊ฐ€์— ์ปค๋‹ค๋ž€ ๋น„์šฉ๊ณผ ๋ถ€๋‹ด์„ ์œ ๋ฐœํ•จ์— ๋”ฐ๋ผ ๊ฐˆ๋“ฑ์„ ํšจ์œจ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋– ํ•œ ํ˜•ํƒœ์˜ ์‹œ๋ฏผ์ฐธ์—ฌ๊ฐ€ ๋ฐ”๋žŒ์งํ•œ๊ฐ€๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๊ฐˆ๋“ฑ๊ด€๋ฆฌ ๊ณผ์ •์—์„œ ์‹œ๋ฏผ์ฐธ์—ฌ ์ œ๋„์™€ ํ•จ๊ป˜ ์‹ค์งˆ์ ์ธ ์ฐธ์—ฌ๋ฐฉ์‹์— ๋Œ€ํ•ด ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋‹จ์ผ ์‚ฌ๋ก€๋กœ์„œ 2003๋…„ 2์›” 4์ผ ์›์ž๋ ฅ์•ˆ์ „์œ„์›ํšŒ์˜ ์˜๋•, ์šธ์ง„, ์˜๊ด‘, ๊ณ ์ฐฝ ๋“ฑ 4๊ฐœ ์ง€์—ญ์˜ ๋ฐฉํ์žฅ ํ›„๋ณด์ง€ ๋ฐœํ‘œ ์ดํ›„, 2005๋…„ 9์›” ๋ถ€์•ˆ๊ตฐ์ด ๋ฐฉํ์žฅ ์œ ์น˜ ์‹ ์ฒญ์„ ๊ณต์‹ ์ฒ ํšŒํ•  ๋•Œ๊นŒ์ง€ ๋ถ€์•ˆ ๋ฐฉํ์žฅ ๋ถ€์ง€์„ ์ • ์ž…์ง€๊ฐˆ๋“ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฐˆ๋“ฑ๋‹จ๊ณ„๋ฅผ ๋‚˜๋ˆ„๊ณ  ๋‹จ๊ณ„๋ณ„๋กœ ์ด๋ฃจ์–ด์ง„ ์‹œ๋ฏผ์ฐธ์—ฌ ํ˜•ํƒœ๋ฅผ ๊ณผ์ •๊ณผ ๊ตฌ์กฐ์ ์ธ ๊ด€์ ์—์„œ ์‚ดํŽด๋ณด์•˜๋‹ค. ๊ฐˆ๋“ฑ๋‹จ๊ณ„ ๋ถ„์„์€ ๊ฐ ๋‹จ๊ณ„์—์„œ์˜ ์‹œ๋ฏผ์ฐธ์—ฌ ํ˜•ํƒœ๋ฅผ ์‚ดํŽด๋ด„์œผ๋กœ์จ ์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ์ด๋ฃจ์–ด์ง„ ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ์ƒํ˜ธ์ž‘์šฉ ์–‘์ƒ์ด ๊ฐˆ๋“ฑํ•ด๊ฒฐ ์ •๋„์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜๋Š”๋ฐ ๋„์›€์ด ๋˜์—ˆ๋‹ค. ๊ฐ ๊ฐˆ๋“ฑ๋‹จ๊ณ„์—์„œ ๊ฐˆ๋“ฑํ•ด๊ฒฐ ์ •๋„๋Š” ์ฃผ๋ฏผ ์ˆ˜์šฉ์„ฑ, ์ดํ•ด๊ด€๊ณ„์ž์˜ ๊ด€๊ณ„ ๋“ฑ์„ ํ†ตํ•ด ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ฐˆ๋“ฑํ‘œ์ถœ๊ธฐ์˜ ์‹œ๋ฏผ์ฐธ์—ฌ๋Š” ๊ฑฐ์˜ ์—†์—ˆ์œผ๋ฉฐ ์ •๋ถ€ ์ฃผ๋„์˜ ๊ณต๊ณ , ์„ค๋ช…ํšŒ ๋“ฑ์— ์ฐธ์„ํ•˜๋Š” ๋ฐ˜์‘์  ์ฐธ์—ฌ๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค. ๊ตฌ์กฐ์  ์ธก๋ฉด์—์„œ๋Š” ๋น„์ œ๋„์ , ์‹œ๋ฏผ๊ฐœ์ž…์ , ๋Œ€๋ฆฝ์ ์ด์—ˆ์œผ๋ฉฐ ๊ฐˆ๋“ฑ์–‘์ƒ์€ ์ฆํญ๋˜์—ˆ๋‹ค. ๊ฐˆ๋“ฑ์ฆํญ๊ธฐ์˜ ์‹œ๋ฏผ์ฐธ์—ฌ๋Š” ์œ„์›ํšŒ๋ฅผ ํ†ตํ•œ ์ œ๋„์  ์ฐธ์—ฌ๊ฐ€ ์žˆ์—ˆ์œผ๋‚˜ ์‹ค์งˆ์  ์ฐธ์—ฌ๋Š” ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค. ์ •๋ถ€๊ฐ€ ๋ถ€์ง€์„ ์ •์œ„์›ํšŒ๋ฅผ ์ •๋ถ€์ธก ์ธ์‚ฌ ์œ„์ฃผ๋กœ ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ์ œ๋„์  ํ‹€์„ ๊ฐ–์ถ”์—ˆ์Œ์—๋„ ์‹œ๋ฏผ์˜ ์˜์‚ฌ๊ฐ€ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋Š” ํ™œ๋™์€ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ, ์ฃผ๋ฏผ๋“ค๋„ ๋“ฑ๊ต๊ฑฐ๋ถ€, ๋ฐ˜ํ•ต ๋ฏผ์ฃผํ•™๊ต ๊ฐœ์ตœ์™€ ๊ฐ™์€ ํ†ต์ œ์  ์ฐธ์—ฌ๋ฅผ ์‹œ๋„ํ•˜์˜€์œผ๋ฉฐ ๋ฌผ๋ฆฌ๋ ฅ์„ ๋™์›ํ•œ ๋Œ€์ค‘๋™์› ๋“ฑ ๋น„์ œ๋„์ , ์‹œ๋ฏผํ–‰๋™์ , ๋Œ€๋ฆฝ์ ์ธ ํ˜•ํƒœ์˜ ์ฐธ์—ฌ๊ฐ€ ์ฃผ๋ฅผ ์ด๋ฃจ์—ˆ๋‹ค. ๊ฐˆ๋“ฑ์ „ํ™˜๊ธฐ๋Š” ์ •๋ถ€์˜ ์ธ์‹ ์ „ํ™˜์— ๋”ฐ๋ผ ํ˜•์‹์  ์ฐธ์—ฌ์—์„œ ์‹ค์งˆ์  ์ฐธ์—ฌ๋กœ, ์ฐธ์—ฌ์˜ ์ˆ˜์ค€์ด ๋†’์•„์ง€๋Š” ์‹œ๊ธฐ์ด๋ฉฐ ๊ฐˆ๋“ฑ์  ์ฐธ์—ฌ๋ณด๋‹ค๋Š” ํ•ฉ์˜์ , ๊ตํ˜ธ์  ์ฐธ์—ฌ๋กœ ๋ณ€ํ™”๋˜์—ˆ๋˜ ์‹œ๊ธฐ์ด๋‹ค. ์‹œ๋ฏผ๋“ค์€ ๊ตญ๋ฏผ๊ฐ์‚ฌ ์ฒญ๊ตฌ ๋“ฑ ์ œ๋„์  ์ˆ˜๋‹จ์„ ํ†ตํ•ด ์˜์‚ฌ๋ฅผ ํ‘œ์ถœํ–ˆ๊ณ  ์ •๋ถ€๋Š” ๋ฐ˜๋Œ€์ธก ์ธ์‚ฌ๋“ค๊ณผ ํ•จ๊ป˜ ๊ณต๋™ํ˜‘์˜ํšŒ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ ๊ตํ˜ธ์ ์ธ ๊ด€๊ณ„๋ฅผ ํ˜•์„ฑํ•ด ๋‚˜๊ฐ€๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๊ฐˆ๋“ฑ์–‘์ƒ๋„ ๋ฌผ๋ฆฌ์  ์‹œ์œ„ํšŸ์ˆ˜๊ฐ€ 28ํšŒ์—์„œ 10ํšŒ๋กœ ๊ธ‰๊ฐํ•˜๋ฉด์„œ ๊ฐˆ๋“ฑ์ด ์™„ํ™”๋˜๋Š” ๋ชจ์Šต์„ ์‹œํ˜„ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ฐˆ๋“ฑํ•ด์†Œ๊ธฐ์˜ ์‹œ๋ฏผ์ฐธ์—ฌ๋Š” ์ œ๋„์  ํ‹€์•ˆ์—์„œ ๊ตํ˜ธ์ ์œผ๋กœ ์ด๋ฃจ์–ด์กŒ๋‹ค. ์—ฌ๋‹น์€ ๋ถ€์•ˆ ๋ฌธ์ œ๋ฅผ ์‚ฌํšŒ ์ฃผ์š”ํ˜„์•ˆ์œผ๋กœ ์ธ์‹ํ•˜๊ณ  ์ค‘์žฌ์ž๋กœ์„œ์˜ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ ์‹œ๋ฏผ-์ •๋ถ€-์ค‘์žฌ์ž๊ฐ€ ์ฐธ์—ฌํ•˜๋Š” ๊ตญ๋ฏผํ†ตํ•ฉ์œ„์›ํšŒ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ ๋Œ€ํ™”๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ •๋ถ€๊ฐ€ ๊ตญ๊ฐ€์ •์ฑ… ์ถ”์ง„์— ์žˆ์–ด ๊ณต๋ก ํ™” ๊ธฐ๊ตฌ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ ์ฃผ๋ฏผ์˜๊ฒฌ์„ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฌดํ™”ํ•˜๊ณ  ๋ฐฉํ์žฅ ๋ถ€์ง€์„ ์ • ์ ˆ์ฐจ, ์šด์˜๋ฐฉ์‹์—๋„ ์ปค๋‹ค๋ž€ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์˜ด์œผ๋กœ์จ ๊ฐˆ๋“ฑ์ด ํ•ด๊ฒฐ๋˜๋Š” ๊ณ„๊ธฐ๋ฅผ ๋งˆ๋ จํ•˜๊ฒŒ ๋œ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์‹œ๋ฏผ์ด ์ฃผ๋„ํ•˜๋Š” ์‹œ๋ฏผํ–‰๋™์ ์ด๊ณ  ํ–‰์œ„์ž๋“ค๊ฐ„์˜ ๊ด€๊ณ„๋„ ์šฐํ˜ธ์ ์ธ ํ–‰ํƒœ๋ฅผ ๋ณด์˜€๋‹ค. ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ํ˜•ํƒœ๋Š” ๊ฐˆ๋“ฑ๊ด€๋ฆฌ ์ •๋„์— ์˜ํ–ฅ์„ ์ฃผ์—ˆ๋‹ค. ๊ฐˆ๋“ฑํ‘œ์ถœ๊ธฐ์— ์‚ฌ์ „ ์˜๊ฒฌ์ˆ˜๋ ด์ ˆ์ฐจ ์ƒ๋žต๊ณผ ์ฐธ์—ฌ์  ์˜์‚ฌ๊ฒฐ์ • ๋ฐฉ์‹์˜ ๋ฏธ์‚ฌ์šฉ์€ ์‹œ๋ฏผ์ฐธ์—ฌ๊ฐ€ ์กด์žฌํ–ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ฐˆ๋“ฑ์ฆํญ์˜ ์›์ธ์ด ๋˜์—ˆ๋‹ค. ๊ฐˆ๋“ฑ์ฆํญ๊ธฐ์— ์ด๋ฃจ์–ด์ง„ ํ˜•์‹์  ์ˆ˜์ค€์˜ ์œ„์›ํšŒ ํ™œ๋™๊ณผ ์ฐธ์—ฌ์  ์˜์‚ฌ๊ฒฐ์ • ํšŒ์˜ ์—ญ์‹œ, ๊ฐˆ๋“ฑ์ , ๋‹จ๊ธฐ์ ์œผ๋กœ ์šด์˜๋จ์œผ๋กœ์จ ๊ฐˆ๋“ฑ๊ด€๋ฆฌ๊ฐ€ ์ œ๋Œ€๋กœ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๊ณ  ๊ฐˆ๋“ฑ ์ฆํญ์˜ ์š”์ธ์ด ๋˜์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ๊ฐˆ๋“ฑ ์ „ํ™˜๊ธฐ์˜ ์‹ค์งˆ์  ์ˆ˜์ค€์˜ ์ฐธ์—ฌ, ํ•ฉ์˜ ํ˜•์„ฑ์ ์ธ ๊ตํ˜ธ์  ์ฐธ์—ฌ๋ฐฉ์‹์€ ๊ฐˆ๋“ฑํ•ด์†Œ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ์ฃผ์—ˆ๋‹ค. ์ดํ›„ ๊ฐˆ๋“ฑํ•ด์†Œ๊ธฐ์˜ ๊ตญ๋ฏผํ†ตํ•ฉ์œ„์›ํšŒ ํ™œ๋™๊ณผ ๊ณต๋ก ํ™” ๊ธฐ๊ตฌ ๊ตฌ์„ฑ์„ ํ†ตํ•œ ๊ฐˆ๋“ฑํ•ด๊ฒฐ ๋…ธ๋ ฅ๊ณผ์ •์—์„œ ์‹œ๋ฏผ ๋˜๋Š” ์‹œ๋ฏผ๋‹จ์ฒด๋“ค์˜ ์ ๊ทน์  ์ฐธ์—ฌ์™€ ํ˜‘์˜์˜ ์ง€์†์„ฑ ํ™•๋ณด ๋…ธ๋ ฅ์€ ์‹œ๋ฏผ์ฐธ์—ฌ๋ฅผ ํ†ตํ•œ ๊ฐˆ๋“ฑ์˜ ์™„ํ™”, ํ•ด์†Œ์— ๊ฒฐ์ •์ ์ธ ์˜ํ–ฅ์„ ์ฃผ์—ˆ๋‹ค. ์ด์ƒ์˜ ๋…ผ์˜์—์„œ ๊ฐˆ๋“ฑ๊ด€๋ฆฌ ๊ณผ์ •์—์„œ ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ์˜ํ–ฅ๊ณผ ํšจ๊ณผ์— ๋Œ€ํ•œ ๋ถ„์„์˜ ์ •์ฑ…์  ์‹œ์‚ฌ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ œ๋„์  ์ฐธ์—ฌ๋งŒ์œผ๋กœ๋Š” ๊ฐˆ๋“ฑ์™„ํ™”์— ์ ˆ๋Œ€์ ์ธ ์˜ํ–ฅ์„ ๋ผ์น˜์ง€ ์•Š์•˜๋‹ค. ์ œ๋„๋ฅผ ์šด์˜ํ•˜๋Š” ๊ณผ์ •์—์„œ ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ์ˆ˜์ค€๊ณผ ์œ ํ˜•์ด ์‹œ๋ฏผ์ฐธ์—ฌ ์ œ๋„๋ฅผ ํ†ตํ•œ ๊ฐˆ๋“ฑ๊ด€๋ฆฌ์˜ ํšจ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๊ฐˆ๋“ฑ ์ดˆ๊ธฐ ๋‹จ๊ณ„์˜ ์ค‘์š”์„ฑ, ์ฆ‰, ๊ฐˆ๋“ฑ์ด ์ฆํญ๋˜๊ธฐ ์ „์˜ ๊ฐˆ๋“ฑ๊ด€๋ฆฌ๊ฐ€ ์ค‘์š”ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ฐˆ๋“ฑ๊ด€๋ฆฌ ๊ณผ์ •์—์„œ ์‹œ๋ฏผ์˜ ์‹ค์งˆ์ , ์ ๊ทน์  ์ฐธ์—ฌ์™€ ํ•ฉ์˜์  ์ž์„ธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ฐˆ๋“ฑ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์€ ์ฃผ์ฒด์ ์ธ ์ฐธ์—ฌ์˜์ง€๊ฐ€ ์žˆ์–ด์•ผ ํ•˜๋ฉฐ ๊ฐˆ๋“ฑํ•ด๊ฒฐ ๊ณผ์ •์—์„œ ๋Œ€๋ฆฝ์ ์ด๊ธฐ๋ณด๋‹ค๋Š” ํ•ฉ์˜์ ์ด๋ฉฐ ํ˜‘์ƒ๊ณผ ํƒ€ํ˜‘์˜ ์ž์„ธ๋ฅผ ๊ฐ–์ถ”์–ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ, ์ •๋ถ€๋Š” ํ•ฉ์˜๊ณผ์ •์— ์ ๊ทน์ ์œผ๋กœ ์ฐธ์—ฌํ•ด์•ผํ•˜๋ฉฐ ๊ทธ๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ •์ฑ…์— ๋ฐ˜์˜ํ•˜์—ฌ ํ•ฉ์˜๊ฒฐ๊ณผ์˜ ์ˆ˜์šฉ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋„๋ก ํ•ด์•ผ ํ•œ๋‹ค.๋ชฉ ์ฐจ ์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์  1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  4 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ๊ณผ ๋ฒ”์œ„ 8 ์ œ 2 ์žฅ ์ด๋ก ์  ๋…ผ์˜์™€ ์„ ํ–‰์—ฐ๊ตฌ๊ฒ€ํ†  9 ์ œ 1 ์ ˆ ์ด๋ก ์  ๊ฒ€ํ†  9 1. ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ๊ฐœ๋…๊ณผ ์˜์˜ 9 2. ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ์œ ํ˜•๊ณผ ์ˆ˜์ค€ 11 3. ๊ณต๊ณต๊ฐˆ๋“ฑ์˜ ๊ฐœ๋…๊ณผ ์ž…์ง€๊ฐˆ๋“ฑ ์š”์ธ 14 4. ๊ณต๊ณต๊ฐˆ๋“ฑ๊ด€๋ฆฌ์— ๊ด€ํ•œ ์ ‘๊ทผ๋ฐฉ์‹ 18 5. ๊ณต๊ณต๊ฐˆ๋“ฑ๊ด€๋ฆฌ์™€ ์‹œ๋ฏผ์ฐธ์—ฌ 23 6. ๊ฐˆ๋“ฑ๊ณผ์ • 28 7. ๊ฐˆ๋“ฑํ•ด๊ฒฐ์˜ ์˜๋ฏธ 29 ์ œ 2 ์ ˆ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  31 1. ์ž…์ง€๊ฐˆ๋“ฑ ๊ด€๋ฆฌ๋ฐฉ์‹์— ๊ด€ํ•œ ์—ฐ๊ตฌ 31 2. ๊ฐˆ๋“ฑ๊ด€๋ฆฌ ์ˆ˜๋‹จ์œผ๋กœ์„œ ์‹œ๋ฏผ์ฐธ์—ฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 34 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ถ„์„ํ‹€ 37 1. ๋น„์„ ํ˜ธ์‹œ์„ค์˜ ์ž…์ง€๊ฐˆ๋“ฑ์—์„œ ์‹œ๋ฏผ์ฐธ์—ฌ ๋ฒ”์œ„ 37 2. ๊ฐˆ๋“ฑ๋‹จ๊ณ„์˜ ์„ค์ • 38 3. ์‹œ๋ฏผ์ฐธ์—ฌ ํ˜•ํƒœ์˜ ์กฐ์ž‘ํ™” 40 4. ๊ฐˆ๋“ฑํ•ด๊ฒฐ(์–‘์ƒ) ์ธก์ •์˜ ์กฐ์ž‘ํ™” 44 ์ œ 3 ์žฅ ๊ฐˆ๋“ฑ์‚ฌ๋ก€ ๋ถ„์„ 46 ์ œ 1 ์ ˆ ๋ถ€์•ˆ ๋ฐฉํ์žฅ ์ž…์ง€๊ฐˆ๋“ฑ ์‚ฌ๋ก€ ๊ฐœ์š” 46 1. ๋ถ€์•ˆ ๋ฐฉํ์žฅ ๊ฑด์„ค ์ถ”์ง„ ๊ฒฝ์œ„ 46 2. ๋ถ€์•ˆ ๋ฐฉํ์žฅ ๊ฑด์„ค ๊ฐˆ๋“ฑ ๊ฐœ์š” 49 3. ๋ถ€์•ˆ ๋ฐฉํ์žฅ ๋ถ€์ง€์„ ์ • ๊ฐˆ๋“ฑ๋‹จ๊ณ„ ๋ฐ ์–‘์ƒ 55 ์ œ 2 ์ ˆ ๊ฐˆ๋“ฑ ๋‹จ๊ณ„๋ณ„ ์‹œ๋ฏผ์ฐธ์—ฌ ์ˆ˜์ค€ ๋ฐ ์œ ํ˜• ๋ถ„์„ 60 1. ๊ฐˆ๋“ฑํ‘œ์ถœ๊ธฐ 61 2. ๊ฐˆ๋“ฑ์ฆํญ๊ธฐ 67 3. ๊ฐˆ๋“ฑ์ „ํ™˜๊ธฐ 74 4. ๊ฐˆ๋“ฑํ•ด์†Œ๊ธฐ 83 5. ๊ฐˆ๋“ฑ๋‹จ๊ณ„๋ณ„ ์‹œ๋ฏผ์ฐธ์—ฌ ๋ถ„์„ 91 ์ œ 3 ์ ˆ ์‹œ๋ฏผ์ฐธ์—ฌ ํ˜•ํƒœ์™€ ๊ฐˆ๋“ฑ๊ด€๋ฆฌ ํšจ๊ณผ 94 1. ๊ฐˆ๋“ฑ๊ณผ์ •์—์„œ ์‹œ๋ฏผ์ฐธ์—ฌ ํ˜•ํƒœ 94 2. ๊ฐˆ๋“ฑํ•ด๊ฒฐ์— ์žˆ์–ด ์‹œ๋ฏผ์ฐธ์—ฌ์˜ ํšจ๊ณผ 97 ์ œ 4 ์žฅ ๊ฒฐ๋ก  ๋ฐ ์—ฐ๊ตฌ์˜ ์ •์ฑ…์  ํ•จ์˜ 100 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ์š”์•ฝ ๋ฐ ์ •์ฑ…์  ํ•จ์˜ 100 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๊ณผ์ œ 104 ์ฐธ๊ณ ๋ฌธํ—Œ 106 Abstract 113Maste

    A Study on the Magnetic Flux Leakage Type Non-Destructive Testing System

    Get PDF
    The magnetic flux leakage(MFL) type non-destructive testing(NDT) system is widely used to detect metal loss of the underground gas pipelines. In the system, sensor module is consisted of permanent magnet, magnetic yoke and hall sensors to detect corrosion defect or any other damages of the gas pipeline. To increase the magnitude of the sensing signals, it is necessary to increase the change of the magnetic leakage flux in the region of defect. The optimal design method of the magnetic system with permanent magnet and yokes is described. In case the operating point on the magnetic saturation curves of the object is too low, the object will not be magnetically saturated in the defect region, so the defect signals become weak. In case it is too high, the change of the magnetic flux in the defect region will be small, so the amplitude of the sensor signal becomes weak. The operating point of the magnetic system is optimized so as to maximize the change of the magnetic flux in the region of the defect. During the measurement, average speed of the PIG module is 4๏ฝž5 m/sec. But, in most cases, the speed of the PIG module is not constant and varying inevitably from 0 to over 10 m/s because of the irregular geometry of the underground pipeline such as curvature, joint, and wrinkle structures. So, it is necessary to compensate the velocity induced distortion signals as to obtain the pure defect signals from measured signals. The method to deduce the speed of the PIG module from the sensing signals are described and the compensation scheme to eliminate the velocity induced signal distortions are developed. In each leg, a magnetizing yoke and magnet were equipped with 3 sets hall sensors to detect the MFL signals. For the measurement, we made a gas pipe of 30 inches diameter with several types of artificial defect. Artificial rhombic defect could be successfully identified from the defect signals. The computed MFL signal obtained by a nonlinear finite element method is verified by actual measurements.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 3 ์ œ 2 ์žฅ 3์ฐจ์› ์œ ํ•œ์š”์†Œ๋ฒ•์— ์˜ํ•œ MFL PIG์˜ ๊ฒ€์ถœ์‹ ํ˜ธ ๊ณ„์‚ฐ 5 2.1 MFL PIG ์‹œ์Šคํ…œ 5 2.2 ์ง€๋ฐฐ๋ฐฉ์ •์‹ 7 2.3 ์ •์‹ํ™” 9 2.4 ์ด์‚ฐํ™” 11 ์ œ 3 ์žฅ MFL PIG ์‹œ์Šคํ…œ์˜ ์ตœ์  ์„ค๊ณ„ 17 3.1 2์ฐจ์› ํ•ด์„๊ณผ 3์ฐจ์› ํ•ด์„์˜ ๋น„๊ต ๊ฒ€ํ†  17 3.2 MFL PIG์˜ ๋น„์„ ํ˜• ํ•ด์„์— ๋Œ€ํ•œ ๊ฒ€ํ†  20 3.3 ๋ธŒ๋Ÿฌ์‰ฌ์˜ ํˆฌ์ž์œจ ์ฒ˜๋ฆฌ 24 3.4 ์„ผ์„œ ์ด๋™ ํ•ด์„๊ณผ ์š”ํฌ ์ด๋™ ํ•ด์„ ๊ฒ€ํ†  25 3.5 ์ž๊ธฐ ํฌํ™” ์‹œ์Šคํ…œ์˜ ๋น„์„ ํ˜• ์„ค๊ณ„ 31 ์ œ 4 ์žฅ ๊ฐ€์Šค๊ด€ ๊ฒฐํ•จ์— ์˜ํ•œ ๊ฒ€์ถœ์‹ ํ˜ธ ๋ถ„์„ 38 4.1 ๊ฒฐํ•จ์— ์˜ํ•œ ๊ฒ€์ถœ์‹ ํ˜ธ ๋ถ„์„์„ ์œ„ํ•œ ๊ธฐ์ดˆ์—ฐ๊ตฌ 38 4.2 MFL PIG ๋„๋ฉด 47 4.3 ๊ฒฐํ•จ์— ์˜ํ•œ 3์ฐจ์› ์‹ ํ˜ธ 47 4.4 ์„ผ์„œ์˜ ์„ฑ๋ถ„๋ณ„ ์‹ ํ˜ธ 47 4.5 ๊ฒฐํ•จ ๊นŠ์ด์— ์˜ํ•œ ์‹ ํ˜ธ 57 4.6 ๊ฒฐํ•จ ํฌ๊ธฐ์— ์˜ํ•œ ์‹ ํ˜ธ 59 4.7 ๊ฒฐํ•จ์˜ ๊ฐ€์‹œํ™” 59 4.8 MFL PIG์˜ ๋ถ„์„ 66 ์ œ 5 ์žฅ PIG ์ฃผํ–‰์†๋„ ๋ฐ ๊ฐ€์Šค๊ด€ ์ฐฉ์ž์— ์˜ํ•œ ์™œ๊ณก์‹ ํ˜ธ ๋ณด์ •๋ฒ• 67 5.1 PIG์˜ ์ฃผํ–‰ ์†๋„์— ์˜ํ•œ ์œ ํ•œ์š”์†Œ ํ•ด์„ 67 5.2 ์†๋„๊ธฐ์ „๋ ฅ ๋ฐ ์žํ™”๋Ÿ‰์ด ๊ณ ๋ ค๋œ ์œ ํ•œ์š”์†Œ ์ •์‹ํ™” 70 5.3 ๊ฐ€์Šค๊ด€ ์ฐฉ์ž์— ์˜ํ•œ ์‹ ํ˜ธ ๋ณด์ • 71 5.4 PIG ์ฃผํ–‰์†๋„์— ์˜ํ•œ ์‹ ํ˜ธ ๋ณด์ • 76 5.5 MFL PIG์˜ ์ด๋™์— ๋”ฐ๋ฅธ ๊ฒ€์ถœ์‹ ํ˜ธ ์˜ํ–ฅ๊ณผ ๋ถ„์„ 87 ์ œ 6 ์žฅ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 88 6.1 8์ธ์น˜ ๋ฐฐ๊ด€์˜ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ ๊ฒ€ํ†  88 6.2 30์ธ์น˜ ๋ฐฐ๊ด€์˜ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ ๊ฒ€ํ†  96 6.3 ๊ฒฐํ•จ์˜ ๊ธธ์ด, ํญ, ๊นŠ์ด ํŒ์ • 121 ์ œ 7 ์žฅ ๊ฒฐ๋ก  123 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 12

    Structural and Biophysical Analyses of Aspartyl-tRNA Synthetase from Homo sapiens and Triosephosphate Isomerase from Thermoplasma acidophilum

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๋Œ€ํ•™ ์•ฝํ•™๊ณผ ์˜์•ฝ์ƒ๋ช…๊ณผํ•™์ „๊ณต, 2016. 2. ํ•œ๋ณ‘์šฐ.Human cytosolic aspartyl-tRNA synthetase (DRS) catalyzes the attachment of the aspartic acid to its specific tRNA. DRS is a component of the multi-tRNA synthetase complex (MSC) which has been known to be involved in unanticipated signaling pathways. The crystal structure of DRS has been determined at 2.25 ร… resolution containing the anticodon binding domain, hinge region, and catalytic domain. The structure also reveals the C-terminal end of the N-helix which is considered as a unique additional domain of DRS, and its conformation further supports the switching model of the N-helix for the transfer of tRNAAsp to elongation factor 1ฮฑ. From the analyses of the crystal structure and post-translational modification of DRS, I suggest that the phosphorylation of Ser146 could initiate a conformational change of the DRS dimer and provokes the separation of DRS from the MSC. This structural study provides the binding site for an interaction partner with unforeseen functions. Thermoplasma acidophilum is one of the most acidophilic organisms that utilize not only non-phosphorylative Entner-Doudoroff (ED) pathway but also Embden-Meyerhof-Parnas (EMP) pathway for glucose degradation. Triosephosphate isomerase (TPI) is structurally and functionally well-known glycolytic enzyme that plays an important role in glycolytic and gluconeogenic metabolism. Crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI) have been determined at 1.94 and 2.17 ร… resolution. TaTPI adopts the canonical TIM-barrel fold with eight ฮฑ-helices and parallel eight ฮฒ-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. Dimeric conformation of TaTPI was further confirmed by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 and helix 4 regions of thermostable tetrameric TPIs are key important tetrameric interface, forming a hydrophobic effects. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6 โ„ƒ and maintains its overall structure with slight changes in the secondary structure contents under extremely acidic conditions. Based on the structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.Chapter 1 Crystal structure of human cytosolic aspartyl-tRNA synthetase 1. Introduction 1 2. Material and methods 8 2.1 Cloning, protein expression, and purification 8 2.2 Crystallization 10 2.3 X-ray data collection and structure determination 12 2.4 Post-translational modification analysis 15 2.5 Data deposition 16 3. Results and discussion 17 3.1 Overall structure and oligomeric state of DRS 17 3.2 Structural comparison of DRSs 22 3.3 Flexible N-terminal extension of DRS 25 3.4 Post-translational modification of DRS 29 3.5 Implication on the MSC assembly 34 Chapter 2 Structure and stability of the dimeric triosephosphate isomerase from Thermoplasma acidophilum 1. Introduction 37 2. Material and methods 43 2.1 Cloning, expression, and purification of TPIs 43 2.2 Crystallization 45 2.3 X-ray data collection and structure determination 47 2.4 Analytical ultracentrifugation (AUC) 53 2.5 Circular dichroism (CD) 55 2.6 Analytical size-exclusion chromatography 56 2.7 Differential scanning calorimetry (DSC) 57 2.8 Data deposition 58 3. Results and discussion 59 3.1 Overall structures of apo- and G3P-bound TaTPI 59 3.2 Unique dimeric conformation of TaTPI 65 3.3 Analytic ultracentrifugation analysis of TaTPI 69 3.4 Structural stability of TaTPI under extreme acidic condition 73 3.5 Structural stability of TaTPI at the high temperature 75 3.6 Proposal of TPI stabilization patches 80 References 83 Abstract (in Korean) 94 Appendix: Printouts of first author publications 97Docto

    ZnO:(Al,Eu) ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์  ๊ด‘ํ•™์  ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2008.8.Docto

    Changes of Apartment Complexโ€™s Main Entrance in accordance with Consumption Awareness of Apartments

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์ถ•ํ•™๊ณผ, 2022. 8. ์„œํ˜„.In the present day, apartment housing represents the residential style of Korea. It is a very uncommon phenomenon to recognize apartment housing as luxurious lifestyle in Korea, and how the flow of society supports this trend is an unprecedented occurrence when compared with other countries. When apartment housing was first introduced in late 1950s, majority of the population did not welcome the unfamiliar residential style that was portrayed in the percentage of distribution. However, apartment housing has now become the most admirable residential life. Together with the residential value, apartment housing added on status value that confirmed oneโ€™s social position, and this transformed how apartments were recognized. This study is to dive deeper into how this change of awareness is being expressed as physical realization on apartment complexes. To form an awareness on an object it requires to be exposed and be experienced to the mass public in various ways. Therefore, this study endeavored to observe the facet of apartment complexes and advertisements that is most exposed and be experienced by the public to identify the awareness on apartment housing. Of the physical component of an apartment complex that has the highest visual exposure and experience frequency due to its accessibility is the โ€œcomplex main exitโ€. Because of its characteristics of strong visibility and a space for experience, the complex main exit has physically shown the change of awareness on apartments outstandingly at the equilibrium where the demand of the residents as consumers required the expression of their social position and the supply of the constructors and their strategic needs crossed together. There have been many studies related to apartments in various fields; however, limitations were found in them as they each only partly focused on a specific area of study. A combination of expertise on different areas of study is needed to understand and explain the compound product called apartment housing. Consequently, this study aims to systematically establish the causal relationship of architecture and sociology in the transformation of apartment complex main exits by investigating and analyzing the changes in these two perspectives. This study targets the apartment complexes established after the 1970s with more than 300 households in Gangnam 3rdDistrict. Common factors of complex main exits in different years and similar changes in the timeline were first garnered through a preliminary survey. The empirical factors that acts in awareness formation, such as โ€œpedestrian-vehicle relationsโ€, โ€œsecurity officeโ€, and โ€œcrossing gateโ€, and visual factors, such as โ€œframe type structureโ€, โ€œexterior building materialsโ€, and โ€œapartment complex namesโ€, were selected and set as the components for frame of present condition investigation of apartment complex main. Complete enumeration survey was then executed on the apartment complex main exits within the study scope. Setting a standard to divide each time period was necessary to analyze the results of present condition investigation of each. The standard was set with newspaper advertisements while considering the periods when consumption awareness on apartment housing were deduced in the preceding research on the change on consumption behavior toward apartments. Constructors created advertisements showing different aspects of the apartments they wished to emphasize, and this established the awareness on apartment housing. Subsequently, apartment complexes were built based on the emphasized aspects in the advertisements, and those accents in constructor commercials were also expressed in the complex main exits. Intrinsically, it was proper to deduce the periods of consumption awareness set in the preceding research is suitable to be the standard required in this study. As a result, newly defined periods of apartment consumption awareness are as follows: from early 1970s to early 1990s, from early 1990s to early 2000s, and from early 2000s to the present. The core content of this study is diving into the diachronic change of complex main exits and its relations to consumption awareness of apartment housing by analyzing the changes in the components of the main exits in different time periods, dividing the results of present condition investigation by the set standard. After conducting the study, it was possible to recognize that the transition of the consumption awareness of apartment housing and the complex main exits happened in an extremely similar direction. Consumption awareness of apartment housing started as functional consumption in the 1970s and, after undergoing a transition period in the late 1990s starting from the foreign-exchange crisis, transformed to ostentatious consumption in the 2000s. Following these transitions, functional aspects of the main exits were emphasized in the , and the functional aspects were maximized and some ostentatious points were partly stressed to express the transitioning period in the . Finally, ostentatious aspects of the complex main exits were majorly highlighted and even demonstrated exclusive characteristics in the . As a conclusion, main exits of apartment complexes transformed to strengthen the functional aspect for the convenience of the residents and furthermore added on exclusive characteristics as a portrayal of ostentation. It was possible to observe how the change in consumption awareness of apartment housing influenced the physical visualization of complex main exits in different time periods and, through comprehensive analysis of these timelines, perceived the flow of diachronic change. This study is differentiated in that complex main exit, which distinguishes the apartment complex from the rest, is at the core of the analysis. Moreover, this research finds significance in simultaneous analysis and conclusion deduced connecting architectural perspective in recognizing the transformation of apartment complex main exits together with sociological standpoint in sensing the change in awareness of apartment housing.์˜ค๋Š˜๋‚  ์•„ํŒŒํŠธ๋Š” ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ๋Œ€ํ‘œ์ ์ธ ์ฃผ๊ฑฐ์–‘์‹์œผ๋กœ ์ž๋ฆฌ ์žก์•˜๋‹ค. ๋Œ€ํ•œ๋ฏผ๊ตญ์—์„œ ์•„ํŒŒํŠธ๊ฐ€ ๊ณ ๊ธ‰์ฃผ๊ฑฐ๋กœ ์ธ์‹๋˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ๋…ํŠนํ•œ ํ˜„์ƒ์ด๊ณ  ์ด๋ฅผ ์ง€์ง€ํ•˜๋Š” ์‚ฌํšŒ์  ํ๋ฆ„ ๋˜ํ•œ ๋‹ค๋ฅธ ๋‚˜๋ผ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ ์ „๋ก€ ์—†๋Š” ํ˜„์ƒ์ด๋‹ค. 1950๋…„๋Œ€ ๋ง์— ์ฒ˜์Œ ์†Œ๊ฐœ๋œ ์•„ํŒŒํŠธ๋Š” ๋Œ€๋‹ค์ˆ˜ ๊ตญ๋ฏผ๋“ค๋กœ๋ถ€ํ„ฐ ํ™˜์˜๋ฐ›์ง€ ๋ชปํ•˜๋Š” ์ƒ๊ฒฝํ•œ ์ฃผ๊ฑฐ์–‘์‹์ด์—ˆ๊ณ  ์ด๋Š” ๋ฏธ๋ถ„์–‘์˜ ๋ชจ์Šต์œผ๋กœ ํ‘œํ˜„๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ์˜ ์•„ํŒŒํŠธ๋Š” ํ•œ๊ตญ์‚ฌํšŒ์—์„œ ์ตœ๊ณ ์˜ ์„ ๋ง ์ฃผ๊ฑฐ์–‘์‹์œผ๋กœ ์ž๋ฆฌ ์žก๊ฒŒ ๋˜์—ˆ๋‹ค. ์•„ํŒŒํŠธ์— ์ฃผ๊ฑฐ์˜ ๊ฐ€์น˜ ์ด์™ธ์— ์‚ฌํšŒ์  ์ง€์œ„๋ฅผ ๋Œ€๋ณ€ํ•˜๋Š” ์ง€์œ„์žฌ์˜ ๊ฐ€์น˜๊ฐ€ ์ถ”๊ฐ€๋˜์—ˆ๊ณ  ๊ทธ ๊ณผ์ •์—์„œ ์•„ํŒŒํŠธ์˜ ์ธ์‹๋„ ๋ณ€ํ™”๋œ ๊ฒƒ์ด๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ธ์‹๋ณ€ํ™”๊ฐ€ ์–ด๋–ป๊ฒŒ ์•„ํŒŒํŠธ ๋‹จ์ง€์— ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๋‹ค์–‘ํ•˜๊ฒŒ ๊ฐ€์‹œํ™”๋˜์–ด ํ‘œํ˜„๋˜์—ˆ๋Š”์ง€๋ฅผ ๊ณ ์ฐฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์–ด๋– ํ•œ ๋Œ€์ƒ์— ๋Œ€ํ•œ ์ธ์‹์ด ํ˜•์„ฑ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋Œ€์ค‘์—๊ฒŒ ๋‹ค์–‘ํ•œ ํ˜•์‹์œผ๋กœ ๋…ธ์ถœ๋˜๊ณ  ๊ฒฝํ—˜๋˜์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•„ํŒŒํŠธ์˜ ์ธ์‹์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์ƒ์œผ๋กœ ์•„ํŒŒํŠธ์˜ ๊ด‘๊ณ ์™€ ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ค‘ ๋Œ€์ค‘์—๊ฒŒ ๊ฐ€์žฅ ๋งŽ์ด ๋…ธ์ถœ๋˜๊ณ  ๊ฒฝํ—˜๋˜๋Š” ๋ถ€๋ถ„์„ ๊ด€์ฐฐํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ์•„ํŒŒํŠธ ๋‹จ์ง€๋ฅผ ์ด๋ฃจ๋Š” ๋ฌผ๋ฆฌ์  ๊ตฌ์„ฑ์š”์†Œ ์ค‘ ๊ฐ€์žฅ ๊ฐ€์‹œ์  ๋…ธ์ถœ๋นˆ๋„๊ฐ€ ๋†’๊ณ  ์ ‘๊ทผ์„ฑ์ด ์ข‹์•„ ๊ฒฝํ—˜๋นˆ๋„๋„ ๋†’์€ ๊ณณ์€ โ€˜์ฃผโ€™์ถœ์ž…๊ตฌ์ด๋‹ค. ์ด๋ ‡๊ฒŒ ๋†’์€ ๊ฐ€์‹œ์„ฑ๊ณผ ๊ฒฝํ—˜๋˜์–ด์ง€๋Š” ๊ณต๊ฐ„์ด๋ผ๋Š” ํŠน์„ฑ ๋•Œ๋ฌธ์— ์•„ํŒŒํŠธ ๋‹จ์ง€์˜ ์ฃผ์ถœ์ž…๊ตฌ๋Š” ์†Œ๋น„์ž์ธ ์ž…์ฃผ๋ฏผ๋“ค์˜ ์‚ฌํšŒ์  ์œ„์ƒ ํ‘œํ˜„ ์š”๊ตฌ์™€ ๊ณต๊ธ‰์ž์ธ ๊ฑด์„ค์‚ฌ์˜ ์ „๋žต์  ํ•„์š”๊ฐ€ ๊ฒฐํ•ฉํ•˜์—ฌ ์•„ํŒŒํŠธ์— ๋Œ€ํ•œ ์ธ์‹๋ณ€ํ™”๋ฅผ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฐ€์žฅ ์ž˜ ํ‘œํ˜„ํ•ด์™”๋‹ค. ์•„ํŒŒํŠธ์™€ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๊ทธ๊ฐ„ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ ์—ฐ๊ตฌ๋“ค์€ ๊ฐ๊ฐ ํ•œ ๋ถ„์•ผ์—์„œ๋งŒ ์ง‘์ค‘์ ์œผ๋กœ ๋‹ค๋ฃจ์–ด์กŒ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ณตํ•ฉ์ ์ธ ์‚ฐ๋ฌผ์ธ ์•„ํŒŒํŠธ๋ฅผ ์„ค๋ช…ํ•˜๊ณ  ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๋ถ„์•ผ์˜ ์ง€์‹๋“ค์˜ ๊ฒฐํ•ฉ์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฑด์ถ•ํ•™๊ณผ ์‚ฌํšŒํ•™์˜ ๊ด€์ ์—์„œ ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌํ•˜๊ณ  ๋ถ„์„ํ•˜์—ฌ ๊ทธ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ณด๋‹ค ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” 1970๋…„๋Œ€ ์ดํ›„์— ๊ฑด๋ฆฝ๋œ ๊ฐ•๋‚จ3๊ตฌ์˜ 300์„ธ๋Œ€ ์ด์ƒ ์•„ํŒŒํŠธ ๋‹จ์ง€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ด๋ฃจ์–ด์กŒ๋‹ค. ์šฐ์„  ์˜ˆ๋น„์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๋„์˜ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ๋“ค์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ์š”์†Œ๋“ค๊ณผ ์—ฐ๋„๋ณ„๋กœ ๋ณ€ํ™”๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋˜ ์š”์†Œ๋“ค์„ ์ทจํ•ฉํ•˜์˜€๋‹ค. ๊ทธ ์ค‘ ์ธ์‹์˜ ํ˜•์„ฑ์— ๊ด€์—ฌํ•˜๋Š” ๊ฒฝํ—˜์  ์š”์†Œ์ธ โ€˜๋ณด์ฐจ๊ด€๊ณ„โ€™, โ€˜๊ฒฝ๋น„์‹คโ€™, โ€˜์ฐจ๋‹จ๊ธฐโ€™์™€ ๊ฐ€์‹œ์  ์š”์†Œ์ธ โ€˜๋ฌธํ‹€ํ˜• ๊ตฌ์กฐ๋ฌผโ€™, โ€˜์™ธ์žฅ์žฌโ€™, โ€˜์•„ํŒŒํŠธ ๋‹จ์ง€ ์ด๋ฆ„โ€™์„ ์„ ์ •ํ•˜์—ฌ ํ˜„ํ™ฉ ์กฐ์‚ฌ์˜ ํ‹€์ธ ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๊ตฌ์„ฑ์š”์†Œ๋กœ ์„ค์ •ํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•ด๋‹น ๋ฒ”์œ„์— ์†ํ•˜๋Š” ์•„ํŒŒํŠธ ๋‹จ์ง€์˜ ์ฃผ์ถœ์ž…๊ตฌ์™€ ๊ทธ ๊ตฌ์„ฑ์š”์†Œ์— ๋Œ€ํ•œ ์ „์ˆ˜์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ–ˆ๋‹ค. ํ˜„ํ™ฉ์กฐ์‚ฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์‹œ๊ธฐ๋ณ„๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹œ๊ธฐ ๊ตฌ๋ถ„์˜ ๊ธฐ์ค€์ด ํ•„์š”ํ–ˆ๋‹ค. ์ด์— ์‹ ๋ฌธ๊ด‘๊ณ ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์•„ํŒŒํŠธ์— ๋Œ€ํ•œ ์†Œ๋น„ํ–‰ํƒœ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•œ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๋„์ถœํ•œ ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹ ์‹œ๊ธฐ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์‹œ๊ธฐ์˜ ๊ธฐ์ค€์„ ์„ค์ •ํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ๊ฑด์„ค์‚ฌ๋Š” ๊ฐ•์กฐํ•˜๊ณ ์žํ–ˆ๋˜ ์•„ํŒŒํŠธ์˜ ๋‹ค์–‘ํ•œ ์ธก๋ฉด๋“ค์„ ๊ด‘๊ณ ๋กœ ๋งŒ๋“ค์—ˆ๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์•„ํŒŒํŠธ์˜ ์ธ์‹์ด ํ˜•์„ฑ๋˜์—ˆ๋‹ค. ๊ทธ ํ›„, ๊ด‘๊ณ ๋ฅผ ํ†ตํ•ด ๊ฐ•์กฐ๋˜์—ˆ๋˜ ์ธก๋ฉด๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์•„ํŒŒํŠธ ๋‹จ์ง€๊ฐ€ ๊ฑด์„ค๋˜์—ˆ๊ณ  ๊ฑด์„ค์‚ฌ๊ฐ€ ๊ด‘๊ณ ๋ฅผ ํ†ตํ•ด ๊ฐ•์กฐํ–ˆ๋˜ ์ธก๋ฉด๋“ค์ด ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์—๋„ ํ‘œํ˜„๋˜์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ด์œ ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ํ•„์š”ํ•œ ์‹œ๊ธฐ๊ตฌ๋ถ„ ๊ธฐ์ค€์— ์„ ํ–‰์—ฐ๊ตฌ์˜ ์†Œ๋น„์ธ์‹ ์‹œ๊ธฐ๊ฐ€ ์ ํ•ฉํ•˜๋‹ค๊ณ  ํŒ๋‹จํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ƒˆ๋กญ๊ฒŒ ์ •์˜ํ•œ ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹ ์‹œ๊ธฐ๋Š” 1970๋…„๋Œ€ ์ดˆ๋ถ€ํ„ฐ 1990๋…„๋Œ€ ์ดˆ๊นŒ์ง€์ธ , 1990๋…„๋Œ€ ์ดˆ๋ถ€ํ„ฐ 2000๋…„๋Œ€ ์ดˆ๊นŒ์ง€์ธ , 2000๋…„๋Œ€ ์ดˆ๋ถ€ํ„ฐ ํ˜„์žฌ๊นŒ์ง€์ธ ์ด๋‹ค. ํ˜„ํ™ฉ์กฐ์‚ฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹ ์‹œ๊ธฐ๋กœ ๋‚˜๋ˆ„์–ด ์‹œ๊ธฐ๋ณ„ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ ๊ตฌ์„ฑ์š”์†Œ์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜๊ณ  ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ํ†ต์‹œ์ ์ธ ๋ณ€ํ™”์™€ ์•„ํŒŒํŠธ ์†Œ๋น„์ธ์‹์˜ ์—ฐ๊ด€์„ฑ์„ ๊ณ ์ฐฐํ•œ ๊ฒƒ์ด ๋ณธ ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ๋‚ด์šฉ์ด๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹๊ณผ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๋ณ€์ฒœ์€ ๋งค์šฐ ํก์‚ฌํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ–‰๋œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹์€ 1970๋…„๋Œ€ ๊ธฐ๋Šฅ์†Œ๋น„๋กœ ์‹œ์ž‘ํ•˜์—ฌ 1990๋…„๋Œ€ ๋ง ์™ธํ™˜์œ„๊ธฐ๋ฅผ ๊ธฐ์ ์œผ๋กœ ๊ณผ๋„๊ธฐ๋ฅผ ๊ฒช์€ ํ›„ 2000๋…„๋Œ€์— ๊ณผ์‹œ์†Œ๋น„๋กœ ๋ณ€ํ–ˆ๋‹ค. ๊ทธ์— ๋งž์ถฐ ์—๋Š” ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๊ธฐ๋Šฅ์ ์ธ ์ธก๋ฉด๋“ค์ด ๊ฐ•์กฐ๋˜์—ˆ๊ณ  ์—๋Š” ๊ธฐ๋Šฅ์ ์ธ ์ธก๋ฉด๋“ค์ด ๊ทน๋Œ€ํ™”๋˜๊ณ  ๊ณผ๋„๊ธฐ์  ํ‘œํ˜„์œผ๋กœ ๊ณผ์‹œ์  ์ธก๋ฉด์ด ์ผ๋ถ€ ๊ฐ•์กฐ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ ์—๋Š” ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๊ณผ์‹œ์ ์ธ ์ธก๋ฉด๋“ค์ด ๋Œ€๊ฑฐ ๊ฐ•์กฐ๋˜์—ˆ๊ณ  ๋ฐฐํƒ€์ ์ธ ์„ฑ๊ฒฉ๋„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ์•„ํŒŒํŠธ ๋‹จ์ง€์˜ ์ฃผ์ถœ์ž…๊ตฌ๋Š” ์ž…์ฃผ๋ฏผ์˜ ํŽธ์˜์„ฑ์„ ์œ„ํ•œ ๊ธฐ๋Šฅ์ ์ธ ์ธก๋ฉด๋“ค์ด ๊ฐ•ํ™”๋˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ณ€ํ™”ํ–ˆ๊ณ  ๋‚˜์•„๊ฐ€ ๊ณผ์‹œ๋ฅผ ํ†ตํ•œ ๋ฐฐํƒ€์ ์ธ ์„ฑ๊ฒฉ์ด ์ถ”๊ฐ€๋œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹ ๋ณ€ํ™”๊ฐ€ ์–ด๋– ํ•œ ๋ฐฉ์‹์œผ๋กœ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์— ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฐ€์‹œํ™”๋˜์–ด ํ‘œํ˜„๋˜์—ˆ๋Š”์ง€๋ฅผ ์‹œ๊ธฐ๋ณ„๋กœ ์‚ดํŽด๋ณด์•˜๊ณ  ์‹œ๊ธฐ๋“ค์˜ ์ข…ํ•ฉ์ ์ธ ๊ณ ์ฐฐ์„ ํ†ตํ•ด ํ†ต์‹œ์ ์ธ ๋ณ€ํ™”์˜ ํ๋ฆ„๋„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์•„ํŒŒํŠธ ๋‹จ์ง€๋ฅผ ์ด๋ฃจ๋Š” ๊ฒฝ๊ณ„ ๊ณต๊ฐ„ ์ค‘ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ๋ฅผ ์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๋ณ€ํ™”๋ผ๋Š” ๊ฑด์ถ•ํ•™์  ๊ด€์ ์„ ์ค‘์‹ฌ์œผ๋กœ ์•„ํŒŒํŠธ์˜ ์ธ์‹๋ณ€ํ™”๋ผ๋Š” ์‚ฌํšŒํ•™์  ๊ด€์ ๊ณผ ํ•จ๊ป˜ ๋ถ„์„ํ•˜๊ณ  ์„œ๋กœ ์—ฐ๊ฒฐ ์ง€์—ˆ๋‹ค๋Š” ์ ์—์„œ ์ด ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ์žˆ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์  2 1.2 ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ๊ณผ ๋ฐฉ๋ฒ• 3 1.2.1 ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ ๋ฐ ๋ฒ”์œ„ 3 1.2.2 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• 4 1.3 ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  6 1.4 ์—ฐ๊ตฌ์˜ ํ๋ฆ„ 8 ์ œ 2 ์žฅ ์ด๋ก ์  ๊ณ ์ฐฐ 11 2.1 ์•„ํŒŒํŠธ์˜ ์‚ฌํšŒ์  ์ธ์‹๊ณผ ์†Œ๋น„ํ–‰ํ…Œ 12 2.1.1 ์•„ํŒŒํŠธ์˜ ๋„์ž… 12 2.1.2 ์•„ํŒŒํŠธ์˜ ๋ธŒ๋žœ๋“œํ™” 15 2.1.3 ์•„ํŒŒํŠธ์— ๋Œ€ํ•œ ์†Œ๋น„ํ–‰ํƒœ ๋ณ€ํ™” 18 2.2 ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์™€ ๋‹จ์ง€ ์ด๋ฆ„ 20 2.2.1 ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๋ณ€ํ™” 20 2.2.2 ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ด๋ฆ„์˜ ๊ฐ€์น˜ ๋ณ€ํ™” 21 2.3 ์šฉ์–ด์˜ ๊ตฌ๋ถ„๊ณผ ์ •์˜ 23 2.3.1 ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹์— ๋”ฐ๋ฅธ ์‹œ๊ธฐ ๊ตฌ๋ถ„ 23 2.3.2 ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์™€ ์•„ํŒŒํŠธ ๋‹จ์ง€๋ช… 26 ์ œ 3 ์žฅ ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ ํ˜„ํ™ฉ ์กฐ์‚ฌ 29 3.1 ์กฐ์‚ฌ ๋Œ€์ƒ ๋ฐ ์œ ํ˜• ์„ค์ • 30 3.1.1 ์กฐ์‚ฌ ๋Œ€์ƒ ์„ค์ • 30 3.1.2 ์กฐ์‚ฌ ๋Œ€์ƒ ์„ธ๋ถ„ํ™” 30 3.2 ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ๊ตฌ์„ฑ์š”์†Œ 32 3.2.1 ๋ณด์ฐจ(ๆญฅ่ปŠ)๊ด€๊ณ„ 33 3.2.2 ๊ฒฝ๋น„์‹ค ๋ฐ ์ฐจ๋‹จ๊ธฐ 35 3.2.3 ๋ฌธํ‹€ํ˜• ๊ตฌ์กฐ๋ฌผ 39 3.2.4 ์™ธ์žฅ์žฌ 40 3.2.5 ์•„ํŒŒํŠธ ๋‹จ์ง€๋ช… 41 3.3 ํ˜„์žฅ ์กฐ์‚ฌ ๊ฒฐ๊ณผ 44 ์ œ 4 ์žฅ ์•„ํŒŒํŠธ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ์˜ ์œ ํ˜• ๋ถ„์„ 46 4.1 ์•„ํŒŒํŠธ์˜ ๊ธฐ๋Šฅ์†Œ๋น„ ์‹œ๊ธฐ 49 4.1.1 ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ ๊ตฌ์„ฑ์š”์†Œ์˜ ๋ณ€ํ™” 50 4.1.2 ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹๊ณผ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ 63 4.2 ์•„ํŒŒํŠธ์˜ ๋ชจ๋ฐฉ์†Œ๋น„ ์‹œ๊ธฐ 66 4.2.1 ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ ๊ตฌ์„ฑ์š”์†Œ์˜ ๋ณ€ํ™” 67 4.2.2 ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹๊ณผ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ 77 4.3 ์•„ํŒŒํŠธ์˜ ๊ณผ์‹œ์†Œ๋น„ ์‹œ๊ธฐ 82 4.3.1 ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ ๊ตฌ์„ฑ์š”์†Œ์˜ ๋ณ€ํ™” 84 4.3.2 ์•„ํŒŒํŠธ์˜ ์†Œ๋น„์ธ์‹๊ณผ ๋‹จ์ง€ ์ฃผ์ถœ์ž…๊ตฌ 96 4.4 ์†Œ๊ฒฐ 100 ์ œ 5 ์žฅ ๊ฒฐ๋ก  102 ์ฐธ๊ณ ๋ฌธํ—Œ 107 ๋ถ€๋ก 110 Abstract 116์„

    ์—ด ํƒ„ํ™”ํ™˜์›๋ฒ•์— ์˜ํ•œ Nano ํฌ๊ธฐ์˜ (Ti,W)C-Ni ๋ถ„๋ง ํ˜ผํ•ฉ์ฒด์˜ ์ œ์กฐ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2002.Maste

    Studies on the structure and function of antimicrobial peptide TF28 ํ•ญ์ƒ ํŽฉํƒ€์ด๋“œ TF28์˜ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ œ์•ฝํ•™๊ณผ ๋ฌผ๋ฆฌ์•ฝํ•™์ „๊ณต,2001.Maste

    A Study on Analysis of the Cathode Voltage Distribution in AMOLED Displays

    No full text
    MasterOrganic light emitting diode (OLED) displays are being actively developed as the flat panel displays of the future. However, there are still many problems to solve. In particular, as the panel size and resolution increase, the rising ground voltage on the panel causes image degradation, through a non-uniformity in brightness. In this paper, the voltage distribution of cathode in AMOLED panels is investigated as a function GND structure, GND side line resistance, GND input resistance, the number of GND inputs and cathode sheet resistance. We present a network model which is composed of unit model resistors. A simplified equivalent cathode model is suggested to simulate the distribution for the GND structure. According to the range of resistance value, the simulation was divided into the top and the bottom emitting structures for various simulations. We investigated various cases of GND distribution in AMOLED panels. The simulation results show the important factors of GND rising, which might be a design guideline for large-size AMOLED displays

    ๋ ˆ๋“œ ํด๋กœ๋ฒ„ ๊ดด์‚ฌ ๋ชจ์ž์ดํฌ ๋ฐ”์ด๋Ÿฌ์Šค์™€ ๊ฐ์ž ๋ฐ”์ด๋Ÿฌ์Šค X์˜ RNA์™€ ๋‹จ๋ฐฑ์งˆ ์‚ฌ์ด์˜ ์ƒํ˜ธ ์ž‘์šฉ์ด ์ž…์ž ํ˜•์„ฑ๊ณผ ์ฆ์‹์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    Genome packaging and replication are a fundamental process in an infection cycle of RNA viruses of plants and other organisms. This process is controlled by specific protein-viral RNA interactions that are selectively distinguished from cellular RNA molecules in the cytoplasmic compartment in which replication and assembly take place. Since the protein-RNA interactions play a crucial role in packaging, I investigated the interactions between the structural capsid protein (CP) and a specific RNA signal of Red clover necrotic mosaic virus (RCNMV) and Potato virus X (PVX). The RCNMV bipartite RNA genome is packaged into two virion populations containing either RNA-1 and RNA-2 or multiple copies of RNA-2 only. To understand this distinctive packaging scheme, I investigated the RNA-binding properties of the RCNMV CP. Maltose binding protein-CP fusions exhibited the highest binding affinities for RNA probes containing the RNA-2 trans-activator or the 3' non-coding region from RNA-1. Other viral and non-viral RNA probes displayed CP binding but to a much lower degree. Deletion of the highly basic N-terminal 50 residues abolished CP binding to viral RNA transcripts. In planta studies of select CP deletion mutants within this N-terminal region revealed that it was indispensable for virion formation but not required for rapid systemic movement. Thus, the N-terminal region of the CP is directly involved in producing two virion populations due to its selective RNA binding properties. To further elucidate additional biological roles for the CP basic residues, a series of alanine substitution mutations (ASM) were introduced into infectious clones of RCNMV RNA-1 and assayed for symptomatology, virion formation and systemic infection. Infectivity assays conducted in Nicotiana benthamiana revealed that all nine ASM mutants were competent for systemic infection. Two ASM mutants (K4A and K7A/K8A) induced severe symptoms and delayed systemic spread of viral genomes when compared to wild-type RCNMV. However, these ASM mutants were still competent for virion formation. Three other ASM mutants (K25A, K33A and K38A) displayed milder symptoms and significant reductions in virion accumulation when compared to wild-type RCNMV but retained the ability to spread systemically. Evidence from these latter three ASM as well as a CP null mutant showed that RCNMV is able to move systemically in N. benthamiana in a non-virion form. These observations reaffirm the necessity of the N-terminal lysine-rich residues of the RCNMV CP for efficient virion accumulation. They also reveal additional roles for the CP in modulating host symptomatology independent of its role in virion assembly and the rate of systemic viral movement in N. benthamiana. Extensive research on PVX has been performed in in vitro transcription systems using the bacteriophage T7 promoter. I constructed an efficient T-DNA based binary vector, pSNU1, and modified vectors carrying PVX replicons. The suitability of the construct as a gene delivery system to transiently express PVX RNA using Agrobacterium tumefaciens was tested by analysis of infectivity in plants. The expressed PVX RNA was infectious and systemically spread in three plant species including Nicotiana benthamiana, N. tabacum cv. Xanthi-nc, and Capsicum annuum cv. Chilsungcho. EMSA and yeast three hybrid results suggest that stem-loop 1 (SL1), which is known as the origin of assembly signal (OAS), binds to the CP in vitro and in vivo and both N- and C-terminal regions of the CP are required for interaction with SL1. To validate these results on virion formation and movement function in plants, I developed an in vivo assembly system by introducing sGFP into the CP coding region. My results indicated that PVX replicons could package viral RNA and complement cell-to-cell movment. Genome replication is also precisely regulated by the interaction between regulatory viral sequences and viral and/or host proteins. In a previous study, I identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stem-loop 1 (SL1), we used northwestern blotting and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. I screened several host factors that might affect PVX replication and selected a candidate protein, Nicotiana tabacum WRKY transcription factor 1 (NtWRKY1). I used a Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of WRKY1 in Nicotiana benthamiana caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic N. benthamiana host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. My results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection. Further investigation together with all results above will shed light on understanding the mechanism of PVX replication, movement and assembly/disassembly processes.๊ฒŒ๋†ˆ ํŒจํ‚ค์ง•๊ณผ ์ฆ์‹์€ ์‹๋ฌผ๊ณผ ๋‹ค๋ฅธ ์ƒ๋ฌผ์—์„œ RNA ๋ฐ”์ด๋Ÿฌ์Šค์˜ ๊ฐ์—ผ ๊ธฐ์ž‘์„ ์œ„ํ•œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ด ๊ณผ์ •์€ ์ฆ์‹๊ณผ ์–ด์…ˆ๋ธ”๋ฆฌ๊ฐ€ ์ผ์–ด๋‚˜๋Š” ์„ธํฌ์งˆ์•ˆ์—์„œ ๋ฐ”์ด๋Ÿฌ์Šค RNA๊ฐ€ ๊ธฐ์ฃผ์˜ RNA ๋ถ„์ž์™€ ์„ ํƒ์ ์œผ๋กœ ๊ตฌ๋ณ„๋  ์ˆ˜ ์žˆ๋Š” ํŠน๋ณ„ํ•œ ๋‹จ๋ฐฑ์งˆ-RNA ์ƒํ˜ธ ์ž‘์šฉ์— ์˜ํ•ด ์กฐ์ ˆ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ ˆ๋“œ ํด๋กœ๋ฒ„ ๊ดด์‚ฌ ๋ชจ์ž์ดํฌ ๋ฐ”์ด๋Ÿฌ์Šค (RCNMV) ์™€ ๊ฐ์ž ๋ฐ”์ด๋Ÿฌ์Šค X (PVX)์˜ RNA์™€ ๋‹จ๋ฐฑ์งˆ ์‚ฌ์ด์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋จผ์ €, RCNMV๋Š” ๋‘ ๊ฐœ์˜ ๊ฒŒ๋†ˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ RNA-1๊ณผ RNA-2๋ฅผ ๋ชจ๋‘ ๊ฐ€์ง€๋Š” ์ž…์ž์™€ ๋„ค ๊ฐœ์˜ RNA-2๋งŒ์„ ๊ฐ€์ง€๋Š” ๋‘ ์ข…๋ฅ˜์˜ ์ž…์ž ๊ตฌ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋…ํŠนํ•œ ํŒจํ‚ค์ง• ๊ณผ์ •์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” RCNMV์˜ ์™ธํ”ผ๋‹จ๋ฐฑ์งˆ์ด ๊ฐ€์ง€๋Š” RNA ๊ฒฐํ•ฉ ํŠน์„ฑ์„ Electrophoretic mobility shift assay (EMSA)๋ฅผ ํ†ตํ•ด ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋งํ† ์˜ค์ฆˆ ๊ฒฐํ•ฉ ๋‹จ๋ฐฑ์งˆ๊ณผ ํ“จ์ „๋œ RCNMV ์™ธํ”ผ๋‹จ๋ฐฑ์งˆ์€ RNA-1์˜ 3 ๋ง๋‹จ ๋ถ€๋ถ„๊ณผ RNA-2์˜ trans-activator (TA) ๋ถ€๋ถ„๊ณผ ํŠน์ด์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. TA-binding site (TABS)์™€ ๊ฐ™์€ ๋‹ค๋ฅธ ๋ฐ”์ด๋Ÿฌ์Šค RNA ๋ถ€๋ถ„๊ณผ ๋ฐ”์ด๋Ÿฌ์Šค RNA๊ฐ€ ์•„๋‹Œ ๋ฒกํ„ฐ ์‹œํ€€์Šค๋กœ ์ด๋ค„์ง„ RNA๋ฅผ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ๋Š” ๊ฒฐํ•ฉ๊ฐ•๋„๊ฐ€ ๋†’์ง€ ์•Š์•˜๋‹ค. ์™ธํ”ผ๋‹จ๋ฐฑ์งˆ์˜ ์ฒ˜์Œ 50๊ฐœ์˜ ์•„๋ฏธ๋…ธ์‚ฐ์„ ์ œ๊ฑฐํ•˜์˜€์„ ๋•Œ RNA์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์€ ์™„์ „ํžˆ ์žƒ์–ด ๋ฒ„๋ ธ๊ณ  ์ด๋Š” ์™ธํ”ผ ๋‹จ๋ฐฑ์งˆ์˜ N ๋ง๋‹จ 50๊ฐœ ์•„๋ฏธ๋…ธ์‚ฐ์ด RNA์™€ ์ƒํ˜ธ์ž‘์šฉ์— ํ•„์ˆ˜์ ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ N ๋ง๋‹จ์— ์‚ญ์ œ ๋Œ์—ฐ๋ณ€์ด์ฒด๋ฅผ ์ œ์ž‘ํ•˜์—ฌ Nicotiana benthamiana์— ์ ‘์ข…ํ•˜์˜€๊ณ  ์‹๋ฌผ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ด ๋ถ€๋ถ„์ด ์ž…์žํ˜•์„ฑ์—๋Š” ํ•„์š”ํ•˜์ง€๋งŒ ์ „์‹ ๊ฐ์—ผ์—๋Š” ํ•„์ˆ˜์ ์ด์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์™ธํ”ผ๋‹จ๋ฐฑ์งˆ์˜ N ๋ง๋‹จ์—๋Š” ์–‘์ „ํ•˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” lysine๊ณผ arginine๊ณผ ๊ฐ™์€ ์•„๋ฏธ๋…ธ์‚ฐ์ด ๋งŽ์€๋ฐ ์ด๋Ÿฌํ•œ ์•„๋ฏธ๋…ธ์‚ฐ์˜ ์—ญํ• ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ์ „ํ•˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์ง€ ์•Š์€ alanine์œผ๋กœ ์น˜ํ™˜ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์น˜ํ™˜ ๋Œ์—ฐ๋ณ€์ด์ฒด๋“ค์„ ์‹๋ฌผ์— ์ ‘์ข…ํ•œํ›„ ๋ณ‘์ง•, ์ž…์žํ˜•์„ฑ ๊ทธ๋ฆฌ๊ณ  ์ „์‹ ๊ฐ์—ผ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. 9๊ฐœ์˜ ๋ชจ๋“  ์น˜ํ™˜ ๋Œ์—ฐ๋ณ€์ด์ฒด๋“ค์€ ๋ชจ๋‘ ์ „์‹ ๊ฐ์—ผ์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋‘๊ฐœ์˜ ์น˜ํ™˜ ๋Œ์—ฐ๋ณ€์ด(K4A and K7A/K8A)๋Š” ์•ผ์ƒํ˜• ๋ฐ”์ด๋Ÿฌ์Šค๋ณด๋‹ค ์‹ฌํ•œ ๋ชจ์ž์ดํฌ์™€ ์ „์‹ ๊ฐ์—ผ์ด ์ง€์—ฐ๋˜์—ˆ๊ณ  ์„ธ๊ฐœ์˜ ๋Œ์—ฐ๋ณ€์ด๋“ค์€ (K25A, K33A and K38A) ์•ผ์ƒํ˜• ๋ฐ”์ด๋Ÿฌ์Šค๋ณด๋‹ค ์•ฝํ•œ ๋ณ‘์ง•๊ณผ ์ž…์ž์˜ ์ถ•์ ์ด ๊ต‰์žฅํžˆ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์œ„์˜ ์น˜ํ™˜ ๋Œ์—ฐ๋ณ€์ด์ฒด๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜๊ณผ ๋”๋ถˆ์–ด RCNMV์˜ ์™ธํ”ผ ๋‹จ๋ฐฑ์งˆ null ๋Œ์—ฐ๋ณ€์ด์ฒด ์‹คํ—˜์€ RCNMV๊ฐ€ ์ž…์žํ˜•ํƒœ๊ฐ€ ์•„๋‹Œ ๋‹ค๋ฅธ ํ˜•ํƒœ๋กœ N. benthamiana๋ฅผ ์ „์‹ ๊ฐ์—ผ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ์‹คํ—˜๋“ค ์ „์ฒด๋กœ๋ถ€ํ„ฐ ์™ธํ”ผ๋‹จ๋ฐฑ์งˆ์€ ์ž…์žํ˜•์„ฑ๊ณผ ์ „์‹ ์ด๋™์œจ์— ์ƒ๊ด€์—†์ด ๋ณ‘์ง•์„ ์กฐ์ ˆํ•˜๋Š” ์—ญํ• ๋„ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋งŽ์€ PVX์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ bacteriophage์˜ T7 promoter๋ฅผ ์‚ฌ์šฉํ•œ in vitro ์ „์‚ฌ ์‹œ์Šคํ…œ์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜์–ด์™”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Agrobacterium tumefaciencs์„ ์ด์šฉํ•˜๊ธฐ ์œ„ํ•ด T-DNA ๊ธฐ๋ฐ˜ ๋ฒกํ„ฐ์™€ ์ด ๋ฒกํ„ฐ ๊ธฐ๋ฐ˜ PVX replicons๋“ค์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ PVX ํด๋ก ๋“ค์˜ ๊ฐ์—ผ์„ฑ์„ Nicotiana benthamiana, N. tabacum cv. Xanthi-nc, and Capsicum annuum cv. Chilsungcho์˜ ์„ธ๊ฐ€์ง€ ์‹๋ฌผ์—์„œ ํ™•์ธํ•˜์˜€๋‹ค. EMSA์™€ yeast three hybrid ์‹คํ—˜์€ PVX์˜ ์ž…์žํ˜•์„ฑ ์‹œ๊ทธ๋„์ธ stem-loop1 (SL1)์ด ์™ธํ”ผ๋‹จ๋ฐฑ์งˆ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ  ๊ทธ ์ค‘์—์„œ๋„ ํŠนํžˆ N๋ง๋‹จ๊ณผ C๋ง๋‹จ์ด ์ƒํ˜ธ์ž‘์šฉ์— ์ค‘์š”ํ•œ ๋„๋ฉ”์ธ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ์™ธํ”ผ ๋‹จ๋ฐฑ์งˆ ๋ถ€๋ถ„์— GFP๋ฅผ ๋„ฃ๊ณ  in vivo ์ž…์žํ˜•์„ฑ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์‹๋ฌผ์—์„œ ์ž…์žํ˜•์„ฑ๊ณผ ์ด๋™์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์ž‘๋œ PVX replicons์ด viral RNA์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ์ž…์ž๋ฅผ ํ˜•์„ฑํ•˜๊ณ  ์™ธํ”ผ๋‹จ ๋ฐฑ์งˆ์„ ์™ธ๋ถ€์—์„œ ๊ณต๊ธ‰ํ•˜์˜€์„ ๋•Œ ๋ฐ”์ด๋Ÿฌ์Šค์˜ ์„ธํฌ๊ฐ„ ์ด๋™์„ ๋ณต์›ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ฐ”์ด๋Ÿฌ์Šค์˜ ์ฆ์‹ ๋˜ํ•œ ๋ฐ”์ด๋Ÿฌ์Šค/๊ธฐ์ฃผ ๋‹จ๋ฐฑ์งˆ์ด ๋ฐ”์ด๋Ÿฌ์Šค RNA์™€ ์ƒํ˜ธ ์ž‘์šฉ์„ ํ†ตํ•ด ์กฐ์ ˆ๋œ๋‹ค. PVX๋ฅผ 5 ๋ง๋‹จ ๋ถ€๋ถ„์˜ RNA์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๊ธฐ์ฃผ๋‹จ๋ฐฑ์งˆ์„ northwestern blot ๋ถ„์„๊ณผ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์—ฌ๋Ÿฌ ํ›„๋ณด ๋‹จ๋ฐฑ์งˆ ์ค‘์— Nicotiana tabacum WRKY transcription factor 1 (NtWRKY1)์„ ์„ ํƒํ•˜์—ฌ PVX ์ฆ์‹์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ง€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๊ณผ๋ฐœํ˜„๊ณผ Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system์„ ์ด์šฉํ•œ ์œ ์ „์ž ์นจ๋ฌต ์‹คํ—˜์„ ํ†ตํ•ด WRKY1์ด ๋ณ‘์ง•๋ฐœํ˜„๊ณผ PVX RNA ์ถ•์ ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” PVX๊ฐ€ ์•„๋งˆ๋„ WRKY1 ์ „์‚ฌ์ธ์ž์™€ 5 ๋ง๋‹จ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ๊ธฐ์ฃผ์—์„œ ๋ณ‘์ง•๋ฐœํ˜„๊ณผ ์ฆ์‹ ๊ธฐ์ž‘์„ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ˆ˜ํ–‰๋œ ๋ฐ”์ด๋Ÿฌ์Šค์˜ ์ž…์žํ˜•์„ฑ๊ณผ ์ฆ์‹์— ํ•„์š”ํ•œ RNA-๋‹จ๋ฐฑ์งˆ ์ƒํ˜ธ์ž‘์šฉ ์—ฐ๊ตฌ๋Š” ๋ฐ”์ด๋Ÿฌ์Šค์˜ ์ฆ์‹, ์ด๋™ ๋ฐ ์ž…์žํ˜•์„ฑ๊ณผ์ •์— ๋Œ€ํ•œ ์šฐ๋ฆฌ์˜ ์ดํ•ด๋ฅผ ๋„—ํžˆ๋Š” ๋ฐ์— ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค.Docto
    corecore