55 research outputs found

    ์นดํŽ˜์ต์‚ฐ๊ณผ ์ž์™ธ์„ A์˜ ์กฐํ•ฉ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•œ ์‹์ค‘๋…๊ท ์˜ ์ œ์–ด ๋ฐ ์‹ ์„ ๋†์‚ฐ๋ฌผ ์„ธ์ฒ™ ์ ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2021.8. ๊ฐ•๋™ํ˜„.The aim of this study was to evaluate the antibacterial activity of caffeic acid (CA) which is a natural polyphenol, combined with ultraviolet-A (UV-A) light against the representative food-borne bacteria, Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. The inactivation results were obtained depending on CA concentration, light wavelength and light dose. All pathogens were significantly (P < 0.05) reduced when treated with CA + UV-A, inactivating E. coli O157:H7 and S. Typhimurium to detection limit. To investigate the inactivation mechanism, measurement of polyphenol uptake by bacteria, membrane damage assessment, enzymatic activity assay, and transmission electron microscopy (TEM) were conducted. It was revealed that CA was significantly (P < 0.05) absorbed by bacterial cells, and UV-A light allowed higher uptake of CA for both pathogens. In the enzymatic activity assay, both pathogens showed a reduction in their activity by CA and a higher reduction occurred by CA + UV-A. Moreover, TEM images indicated that CA + UV-A treatment remarkably destructed intercellular structure. To further address the application on fresh produce washing, reusability of caffeic acid for CA + UV-A assisted washing, the effects of organic content and turbidity, and ability to inhibit cross-contamination as well as to inactivate inoculated pathogens were studied. As a result, CA was able to retain its antibacterial activity upon UV-A irradiation for three consecutive treatment cycles, by inactivating more than 6 log CFU/ml for each cycle. Also, CA + UV-A treatment was not noticeably affected by organic content and turbidity. Lastly, when apple slices were washed with CA + UV-A treatment, cross-contamination was controlled by significantly (P < 0.05) inhibiting E. coli O157:H7 and L. monocytogenes from attaching to surfaces and the remaining population in liquid after washing was not detected. Moreover, when both pathogens were inoculated onto surfaces and further subjected to CA + UV-A washing, they were reduced under detection limit for both apple and liquid. Therefore, this study suggests a possibility of caffeic acid + UV-A assisted washing to be applied in food industry, as it showed an effective antibacterial activity both in liquid and in actual washing process. Moreover, the established condition for an efficient inactivation, and examination data of inactivation mechanism would provide a baseline for further research regarding photodynamic inactivation.์ด ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ž์—ฐ์— ์กด์žฌํ•˜๋Š” ํด๋ฆฌํŽ˜๋†€ ๋ฌผ์งˆ ์ค‘ ํ•˜๋‚˜์ธ ์นดํŽ˜์ต์‚ฐ๊ณผ ์ž์™ธ์„ A์˜ ์กฐํ•ฉ์ฒ˜๋ฆฌ๊ธฐ์ˆ ์„ ์ฃผ์ œ๋กœ, ๋Œ€ํ‘œ์ ์ธ ์‹์ค‘๋…๊ท ์ธ Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes์— ๋Œ€ํ•œ ํ•ญ๊ท ๋Šฅ๋ ฅ์„ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ €๊ฐํ™” ๊ฒฐ๊ณผ๋Š” ์นดํŽ˜์ต์‚ฐ์˜ ๋†๋„, ๋น›์˜ ํŒŒ์žฅ๊ณผ ์กฐ์‚ฌ๋Ÿ‰์— ๋Œ€ํ•˜์—ฌ ์ œ์‹œ๋˜์—ˆ์œผ๋ฉฐ, ์„ธ ์ข…๋ฅ˜ ๋ณ‘์›๊ท  ๋ชจ๋‘ ์นดํŽ˜์ต์‚ฐ + ์ž์™ธ์„ A์˜ ์กฐํ•ฉ์ฒ˜๋ฆฌ์— ์˜ํ•ด ์œ ์˜๋ฏธํ•˜๊ฒŒ (P < 0.05) ์ €๊ฐํ™” ๋˜์—ˆ๋‹ค. ํŠนํžˆ, E. coli O157:H7๊ณผ S. Typhimurium์€ ๊ฒ€์ถœํ•œ๊ณ„ ๋ฐ‘์œผ๋กœ ๊ฐ์†Œํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ์ €๊ฐํ™” ๊ธฐ์ž‘์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ๊ท ์˜ ํด๋ฆฌํŽ˜๋†€ ํก์ˆ˜ ์ •๋„์™€ ์„ธํฌ๋ง‰ ํŒŒ๊ดด ์ •๋„, ํšจ์†Œ ํ™œ์„ฑ์„ ์ธก์ •ํ•˜์˜€๊ณ  ํˆฌ๊ณผํ˜„๋ฏธ๊ฒฝ์„ ์‚ฌ์šฉํ•ด ์„ธํฌ๊ตฌ์กฐ๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์นดํŽ˜์ต์‚ฐ์€ ์„ธ๊ท  ์„ธํฌ์— ์˜ํ•ด ์œ ์˜๋ฏธํ•œ ์ˆ˜์ค€ (P < 0.05) ์œผ๋กœ ํก์ˆ˜๋˜์—ˆ๊ณ , ์ž์™ธ์„ A๋ฅผ ์กฐํ•ฉํ•˜์˜€์„ ๋•Œ ๊ทธ ํก์ˆ˜ ์ •๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์นดํŽ˜์ต์‚ฐ์— ์˜ํ•ด ํšจ์†Œ ํ™œ์„ฑ์˜ ๊ฐ์†Œ๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ, ์นดํŽ˜์ต์‚ฐ + ์ž์™ธ์„ A ์กฐํ•ฉ์ฒ˜๋ฆฌ์— ์˜ํ•ด ๋” ํฐ ๊ฐ์†Œ๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ํˆฌ๊ณผํ˜„๋ฏธ๊ฒฝ์„ ํ†ตํ•ด ์กฐํ•ฉ์ฒ˜๋ฆฌ ์‹œ ์„ธํฌ๋ง‰ ๋‚ด ๊ตฌ์กฐ๊ฐ€ ํ˜„์ €ํ•˜๊ฒŒ ํŒŒ๊ดด๋˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‚˜์•„๊ฐ€ ์‹ ์„ ์‹ํ’ˆ ์„ธ์ฒ™ ์ ์šฉ์„ ์œ„ํ•ด, ์นดํŽ˜์ต์‚ฐ์˜ ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ, ์œ ๊ธฐ๋ฌผ ๋ฐ ํƒ๋„์˜ ์˜ํ–ฅ, ๊ทธ๋ฆฌ๊ณ  ๊ต์ฐจ์˜ค์—ผ๋ฐฉ์ง€ ๋ฐ ์ดˆ๊ธฐ์— ์˜ค์—ผ๋œ ์‹ํ’ˆ์—์„œ์˜ ์ €๊ฐํ™” ๋Šฅ๋ ฅ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์นดํŽ˜์ต์‚ฐ์€ ์„ธ ๋ฒˆ์˜ ์—ฐ์†์ ์ธ ์ฒ˜๋ฆฌ ์ดํ›„์—๋„ ํ•ญ๊ท  ํ™œ์„ฑ์„ ์œ ์ง€ํ•˜์˜€๊ณ , ์นดํŽ˜์ต์‚ฐ + ์ž์™ธ์„ A ์กฐํ•ฉ์ฒ˜๋ฆฌ์˜ ์ €๊ฐํ™” ํšจ์œจ์€ ์„ธ์ฒ™์ˆ˜ ๋‚ด์˜ ์œ ๊ธฐ๋ฌผ๊ณผ ํƒ๋„์—๋„ ์˜ํ–ฅ๋ฐ›์ง€ ์•Š์•˜๋‹ค. ์‹ค์ œ ์‚ฌ๊ณผ๋ฅผ ์ด์šฉํ•œ ์นดํŽ˜์ต์‚ฐ + ์ž์™ธ์„ A ์กฐํ•ฉ ์„ธ์ฒ™ ์‹คํ—˜์„ ํ•˜์˜€์„ ๋•Œ, ๊ท ์ด ์‚ฌ๊ณผ ํ‘œ๋ฉด์— ๋ถ€์ฐฉ๋˜๋Š” ์ •๋„๋ฅผ ์œ ์˜๋ฏธํ•˜๊ฒŒ (P < 0.05) ๊ฐ์†Œ์‹œํ‚ด์œผ๋กœ์จ ๊ต์ฐจ์˜ค์—ผ์„ ๋ฐฉ์ง€ํ•˜์˜€๊ณ  ์„ธ์ฒ™์ˆ˜ ๋‚ด ์ž”์—ฌ ๋ฏธ์ƒ๋ฌผ๋„ ๊ฒ€์ถœ๋˜์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ ์‚ฌ๊ณผ ํ‘œ๋ฉด์— ๋†’์€ ๋†๋„์˜ ๊ท ์„ ์ ‘์ข…ํ•œ ๋’ค ์นดํŽ˜์ต์‚ฐ + ์ž์™ธ์„ A๋ฅผ ์กฐํ•ฉํ•œ ์„ธ์ฒ™ ์‹คํ—˜์„ ํ•œ ๊ฒฐ๊ณผ, ์‚ฌ๊ณผ์™€ ์„ธ์ฒ™์ˆ˜ ๋ชจ๋‘์—์„œ ๊ท ์ด ๊ฒ€์ถœ ํ•œ๊ณ„ ๋ฐ‘์œผ๋กœ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š”, ์นดํŽ˜์ต์‚ฐ๊ณผ ์ž์™ธ์„ A ์กฐํ•ฉ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์˜ ์•ก์ฒด์™€ ์‹ค์ œ ์‹ํ’ˆ ์„ธ์ฒ™ ๊ณผ์ • ๋ชจ๋‘์—์„œ์˜ ๋†’์€ ์ €๊ฐํ™” ํšจ์œจ์„ ํ†ตํ•ด, ํ•ด๋‹น ๊ธฐ์ˆ ์˜ ์‹ํ’ˆ ์‚ฐ์—…์—์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜๋Š” ์—ฐ๊ตฌ์ด๋‹ค. ๋˜ํ•œ ํšจ์œจ์ ์ธ ์ €๊ฐํ™” ์กฐ๊ฑด๊ณผ ์ €๊ฐํ™” ๊ธฐ์ž‘์˜ ๋ถ„์„ ๋“ฑ์€ ์ถ”ํ›„ ๊ด€๋ จ ์—ฐ๊ตฌ์— ๊ธฐ์ดˆ ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.โ… . INTRODUCTION 1 โ…ก. MATERIALS AND METHODS 6 2.1 Bacterial strains and cell suspension 6 2.2 Preparation of caffeic acid stock solutions 7 2.3 Experimental setup and treatment 7 2.4 Bacterial enumeration 8 2.5 Analysis of inactivation mechanism 9 2.5.1 Polyphenol uptake assay 10 2.5.2 Membrane damage assessment 10 2.5.3 Enzymatic activity measurement 11 2.5.4 Transmission electron microscopy (TEM) 12 2.6 Application of CA + UV-A treatment on fresh produce washing 13 2.6.1 Reusability of caffeic acid for CA + UV-A treatment 13 2.6.2 Effects of organic content and turbidity in wash-water 14 2.6.3 Application on fresh produce washing : apple 15 2.7 Statistical analysis 17 โ…ข. RESULTS AND DISCUSSIONS 18 3.1 Effects of various factors on the antibacterial activity of CA + UV-A treatment 18 3.2 Analysis of inactivation mechanism 28 3.3 Application of CA + UV-A treatment on fresh produce washing 40 3.3.1 Reusability of caffeic acid for CA + UV-A treatment 40 3.3.2 Effects of organic content and turbidity in wash-water 42 3.3.3 Application on fresh produce washing : apple 50 3.3.3.1 Inhibition of cross-contamination during washing 50 3.3.3.2 Inactivation of pathogen inoculated on fresh produce 54 โ…ฃ. CONCLUSION 55 โ…ค. REFERENCES 56 โ…ฅ. ๊ตญ๋ฌธ์ดˆ๋ก 69์„

    Dispersion of SWNTs by an Oligothiophene-based Organogelator

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2013. 2. ์žฅ์ง€์˜.We prepared organogels of an oligothiophene-based organogelator and their composites with SWNTs. As CNTs have high aspect ratios and extraordinary electrical, chemical and mechanical properties, they have diverse potential applications. However, their practical applications remain limited because CNTs predominantly exist in an aggregated state due to the van der Waals force between themselves. In this work, SWNTs were dispersed in an organogel using an oligothiophene-based organogelator as a dispersant. The organogelator was prepared by imine condensation between the oligothiophene unit having aldehyde end groups and benzamide derivatives having long alkyl chains. A SWNTs/Gel composite was prepared by mixing SWNTs in a gelator solution. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies confirmed that SWNTs were well dispersed in organogel due to strong ฯ€-ฯ€ interaction between oligothiophenes and SWNTs. In the rheological study, SWNTs/Gel composite showed enhanced dynamic mechanical properties, conductivity compared with the organogelAbstract iii Contents v 1.Introduction 1 2. Experimental 7 3. Results and Discussion 18 4. Conclusion 36 5. References 37 APPENDIX 42 ๊ตญ๋ฌธ์š”์•ฝ 43Maste

    ์—ฌ์„ฑ๊ณผ ์‚ถ, ๊ทธ๋ฆฌ๊ณ  ํ—ˆ๊ตฌ: ๋ฒ„์ง€๋‹ˆ์•„ ์šธํ”„์˜ ใ€Ž์ž๊ธฐ๋งŒ์˜ ๋ฐฉใ€๊ณผ ใ€Ž์˜ฌ๋žœ๋„ใ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜์–ด์˜๋ฌธํ•™๊ณผ, 2014. 8. ์†์˜์ฃผ.๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ„์ง€๋‹ˆ์•„ ์šธํ”„์˜ ใ€Ž์ž๊ธฐ๋งŒ์˜ ๋ฐฉใ€๊ณผ ใ€Ž์˜ฌ๋žœ๋„ใ€์˜ ํ—ˆ๊ตฌ์  ์„œ์‚ฌ๊ฐ€ ๋‘ ์ž‘ํ’ˆ ๋ฟ ์•„๋‹ˆ๋ผ ์šธํ”„์˜ ์ „๋ฐ˜์ ์ธ ์ž‘ํ’ˆ์„ธ๊ณ„๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ์Œ์„ ๋ฐํžˆ๊ณ ์ž ํ•œ๋‹ค. ์šธํ”„๋Š” ๋‘ ์ž‘ํ’ˆ์—์„œ ํ—ˆ๊ตฌ์  ํ™”์ž์˜ ์ง„์ง€ํ•œ ํƒœ๋„์™€ ํ™˜์ƒ์ ์ผ ์ •๋„๋กœ ํ—ˆ๊ตฌ์ ์ธ ๋“ฑ์žฅ์ธ๋ฌผ์˜ ํŠน์ง•๋“ค์„ ๋ถ€๊ฐ์‹œํ‚ด์œผ๋กœ์จ ๊ฐ€๋ถ€์žฅ์ ์ธ ์ด๋ฐ์˜ฌ๋กœ๊ธฐ ํ•˜์—์„œ ์–ต๋ˆŒ๋ ค์˜จ ์—ฌ์„ฑ๊ณผ ์™œ๊ณก๋œ ๊ทธ๋“ค์˜ ์‚ถ์— ๊ด€ํ•œ ๊ธฐ๋ก์— ๋Œ€ํ•œ ๋ฌธ์ œ์˜์‹์„ ์žฅ๋‚œ์Šค๋Ÿฝ๊ณ  ์šฐํšŒ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋“œ๋Ÿฌ๋‚ด๊ณ , ๋‚˜์•„๊ฐ€ ๋…์ž๊ฐ€ ๊ทธ๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด ์Šค์Šค๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. 1์žฅ์—์„œ๋Š” ์‚ฌ์‹ค์— ์ถฉ์‹คํ•˜๊ณ  ์žˆ์Œ์„ ๋Š์ž„์—†์ด ์–ธ๊ธ‰ํ•˜๋Š” ใ€Ž์ž๊ธฐ๋งŒ์˜ ๋ฐฉใ€์˜ ํ—ˆ๊ตฌ์  ํ™”์ž๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์šธํ”„๊ฐ€ ์—ญ์„ค์ ์œผ๋กœ ๋‚จ์„ฑ์ค‘์‹ฌ์ ์ธ ์ด๋ฐ์˜ฌ๋กœ๊ธฐ๊ฐ€ ๊ตฌ์„ฑํ•˜๋Š” ์‚ฌ์‹ค์ด ์–ผ๋งˆ๋‚˜ ์„ ๋ณ„์ ์ด๊ณ  ์ผ๋ฐฉ์ ์ธ์ง€ ํญ๋กœํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ดํŽด๋ณธ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ ์‚ฌ์‹ค์ด๋ž€ ์‹ค์ œ๋กœ ์žˆ์—ˆ๋˜ ์ผ์ด๋‚˜ ํ˜„์žฌ์˜ ์ผ์ด๋ผ๋Š” ์˜๋ฏธ์˜ ์ผ๋ฐ˜์ ์œผ๋กœ ํ†ต์šฉ๋˜๋Š” ์‚ฌ์‹ค๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ, ์‹ค์ œ๋กœ ์žˆ์—ˆ๋˜ ์ผ์ด๋ผ ํ•˜๋”๋ผ๋„ ์ง€๋ฐฐ์ ์ธ ์ด๋ฐ์˜ฌ๋กœ๊ธฐ๋ฅผ ๊ฐ•ํ™”์‹œํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์™œ๊ณก๋˜๊ณ  ์กฐ์ž‘๋˜์–ด ์ง„์‹ค์ด ์•„๋‹˜์—๋„ ๋งˆ์น˜ ์ง„์‹ค์ธ ๊ฒƒ์ฒ˜๋Ÿผ ๊ณต์œ ๋˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋ณธ๊ณ ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์‹ค๋ณด๋‹ค ์šธํ”„๊ฐ€ ๋งŒ๋“ค์–ด๋‚ด๋Š” ํ—ˆ๊ตฌ์ ์ธ ์ด์•ผ๊ธฐ๊ฐ€ ์˜คํžˆ๋ ค ์–ธ์  ๊ฐ€๋Š” ์‹ค์žฌํ•  ์ˆ˜ ์žˆ๋Š” ์ง„์‹ค์„ ํฌ๊ด„ํ•˜๊ณ  ์žˆ์Œ์„ ์ฆ๋ช…ํ•œ๋‹ค. 2์žฅ์—์„œ๋Š” ใ€Ž์ž๊ธฐ๋งŒ์˜ ๋ฐฉใ€๊ณผ ใ€Ž์˜ฌ๋žœ๋„ใ€์—์„œ ์—ฌ์„ฑ ๋“ฑ์žฅ์ธ๋ฌผ๋“ค์ด ์„œ์ˆ ๋˜๋Š” ๋ฐฉ์‹์— ์ง‘์ค‘ํ•˜์—ฌ ์šธํ”„๊ฐ€ ๊ฐ€๋ถ€์žฅ์ œ์— ์˜ํ•ด ๋งˆ์น˜ ๋ณธ์งˆ์ ์ธ ๊ฒƒ์ฒ˜๋Ÿผ ๊ทœ์ •๋œ ์—ฌ์„ฑ์„ฑ๊ณผ ๋‚จ์„ฑ์„ฑ์˜ ๊ฐ€์น˜๊ฐ€ ์–ผ๋งˆ๋‚˜ ํ—ˆ๊ตฌ์ ์ธ์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ณผ์ •์„ ๋ถ„์„ํ•œ๋‹ค. ์šธํ”„๋Š” ๋‹น๋Œ€ ์‚ฌํšŒ ์†์—์„œ ์–ต์••๋œ ์ž๋“ค์ด ์˜ˆ์ˆ ์ ์œผ๋กœ ์ž๊ธฐ ์ž์‹ ์„ ํ‘œํ˜„ํ•ด๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋  ๋•Œ ๋น„๋กœ์†Œ ์ „ํ†ต์ ์ธ ์„ฑ๋ณ„ ๊ตฌ๋ถ„์„ ๋”ฐ๋ฅด์ง€ ์•Š๋Š” ์—ฌ์„ฑ์œผ๋กœ ์กด์žฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์•”์‹œํ•˜๊ณ , ์ ์ฐจ ์—ฌ์„ฑ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ์˜ฌ๋žœ๋„๋ฅผ ํ†ตํ•ด ๊ทธ ๊ฐœ๋…์„ ๊ตฌ์ฒดํ™”ํ•œ๋‹ค. ๋‹น๋Œ€ ์‚ฌํšŒ์—์„œ ์ด๋ฆ„ ์—†์ด ์‚ด์•„์•ผ ํ–ˆ๋˜ ์—ฌ์„ฑ์—๊ฒŒ ์กด์žฌ๊ฐ์„ ๋ถ€์—ฌํ•˜๋Š” ์—ฌ์„ฑ์ด๋ผ๋Š” ๊ฐœ๋…์€, ๋ฐฑ์ธ ๋‚จ์„ฑ ์ค‘์‹ฌ์ ์ธ ์‚ฌํšŒ์—์„œ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์†Œ์™ธ๋  ์ˆ˜ ๋ฐ–์— ์—†์—ˆ๋˜ ๊ณ„๊ธ‰๊ณผ ์ธ์ข…์˜ ์‚ถ์— ๊ด€ํ•ด์„œ๋„ ์„ฑ์ฐฐํ•  ์ˆ˜ ์žˆ๋Š” ํ‹€์„ ์ œ๊ณตํ•œ๋‹ค. 3์žฅ์—์„œ๋Š” ์•ž์„  ๋‘ ์žฅ์—์„œ ์‚ดํŽด๋ณธ ์‚ฌ์‹ค๊ณผ ์—ฌ์„ฑ ๋“ฑ์˜ ๊ฐœ๋…์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ํ† ๋Œ€๋กœ, ์šธํ”„๊ฐ€ ใ€Ž์˜ฌ๋žœ๋„ใ€์˜ ํ™”์ž๋ฅผ ํ†ตํ•ด ์˜๋„์ ์œผ๋กœ ์กฐ๋ช…ํ•˜๋Š” ์ „๊ธฐ์  ์‚ฌ์‹ค์˜ ๋ถˆ์™„์ „ํ•จ์„ ๋“ค์—ฌ๋‹ค๋ณด๊ณ , ์šธํ”„๊ฐ€ ์‹œ๋„ํ•œ ์ƒˆ๋กœ์šด ์ „๊ธฐ์  ๊ธ€์“ฐ๊ธฐ์˜ ํšจ๊ณผ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์šธํ”„๋Š” ํ—ˆ๊ตฌ์  ์„œ์‚ฌ๋ฅผ ํ†ตํ•ด ์ธ๋ฌผ์˜ ๋‚ด๋ฉด์„ ์ถ”์ ํ•จ์œผ๋กœ์จ ์ธ๋ฌผ์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๊นŠ๊ฒŒ ํ•  ๋ฟ ์•„๋‹ˆ๋ผ ์ธ๋ฌผ๊ณผ ์™ธ๋ถ€์„ธ๊ณ„์™€์˜ ๊ธด๋ฐ€ํ•œ ๊ด€๊ณ„์—๊นŒ์ง€ ์ ‘๊ทผํ•œ๋‹ค. ๋˜ํ•œ ์šธํ”„๋Š” ์ž์‹ ์ด ๋˜์ ธ๋†“์€ ๋ฌธ์ œ์˜์‹๋“ค์„ ๋…์ž๊ฐ€ ํŒŒ์•…ํ•˜๊ณ  ํ•จ๊ป˜ ์†Œํ†ตํ•˜๊ธฐ๋ฅผ ์›ํ•˜๊ณ  ์žˆ์Œ์„ ์ž‘ํ’ˆ ๊ณณ๊ณณ์—์„œ ์•”์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์šธํ”„์˜ ์ง„์ง€ํ•œ ์ž‘ํ’ˆ์„ธ๊ณ„์— ์ผ๊ด€์„ฑ์„ ๋ถ€์—ฌํ•˜๊ธฐ ์œ„ํ•ด ์•„์˜ˆ ๋ฌด์‹œ๋˜๊ฑฐ๋‚˜, ํŽ˜๋ฏธ๋‹ˆ์ฆ˜์ ์ธ ๊ด€์ ์—์„œ๋งŒ ๋…ผ์˜๋˜๊ณค ํ–ˆ๋˜ ๋‘ ์ž‘ํ’ˆ์˜ ํ—ˆ๊ตฌ์„ฑ์„ ์—ฐ๊ฒฐํ•˜์—ฌ ์ƒˆ๋กญ๊ฒŒ ์กฐ๋ช…ํ•˜๋Š”๋ฐ์— ์˜์˜๋ฅผ ๋‘”๋‹ค. ์ƒ๋Œ€์ ์œผ๋กœ ๊ฐ€๋ฒผ์šด ํ—ˆ๊ตฌ์  ์„œ์‚ฌ ์•ˆ์— ๋‹ด๊ฒจ์žˆ๋Š” ์ƒ๋‹นํžˆ ๋ฌด๊ฑฐ์šด ๋ฌธ์ œ์˜์‹๋“ค์„ ์ง„์ง€ํ•˜๊ฒŒ ์ฝ์–ด๋‚ด๋Š” ๊ฒƒ์ด ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์ด๋‹ค.์„œ๋ก  โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 1 1. ใ€Ž์ž๊ธฐ๋งŒ์˜ ๋ฐฉใ€์„ ํ†ตํ•ด ๋ณธ ์‚ฌ์‹ค๊ณผ ํ—ˆ๊ตฌ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 19 2. ํ—ˆ๊ตฌ์™€ ์—ฌ์„ฑ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 42 3. ์˜ฌ๋žœ๋„์˜ ์‚ถ, ใ€Ž์˜ฌ๋žœ๋„ใ€์˜ ๋…์ž โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 72 ๊ฒฐ๋ก  โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 103 ์ธ์šฉ๋ฌธํ—Œ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 105 Abstract โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 112Maste

    ๋ฒŒ๊ธฐ๋ น ์—ฐ์žฅ ์‚ฐ๋ฆผ๊ฒฝ์˜ ์œ ํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์‚ฐ๋ฆผ๊ณผํ•™๋ถ€(์‚ฐ๋ฆผํ™˜๊ฒฝํ•™์ „๊ณต), 2020. 8. ์œค์—ฌ์ฐฝ.์šฐ๋ฆฌ๋‚˜๋ผ ์‚ฐ๋ฆผ์ด ์ „์ฒด ๊ตญํ† ์˜ 67%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•˜๋ฉด ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์—์„œ ์‚ฌ์œ ๋ฆผ ์‚ฐ์ฃผ์˜ ์ฐธ์—ฌ๊ฐ€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ์‚ฐ๋ฆผํƒ„์†Œ๋ฐฐ์ถœ์ƒ์‡„๊ถŒ์˜ ๋‹จ์œ„๋‹น ์ƒ์‚ฐ๋น„์šฉ ๊ฒฐ์ •์š”์ธ ๋ถ„์„, ์ˆ˜์šฉ์˜์‚ฌ๊ธˆ์•ก(willingness to accept, WTA) ๋„์ถœ, ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์— ์ฐธ์—ฌ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„์ง€๋Š” ํŠน์„ฑ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์ˆ˜์ข…๊ณผ ์‚ฌ์—…๋ฉด์ ์ด ๋‹จ์œ„๋‹น ์ƒ์‚ฐ๋น„์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์œผ๋กœ ๋„์ถœ๋˜์—ˆ๊ณ  ํ™œ์—ฝ์ˆ˜์˜ ๋น„์œจ์ด ๋†’์€ ์‚ฌ์—…์ผ์ˆ˜๋ก, ์‚ฌ์—…๋ฉด์ ์ด ๋„“์„์ˆ˜๋ก ๋‹จ์œ„๋‹น ์ƒ์‚ฐ๋น„์šฉ์ด ๋‚ฎ์•„์ง€๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‚ฐ์ฃผ์˜ WTA๋ฅผ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ ์‚ฌ์—… ๊ธฐ๊ฐ„์— ๋”ฐ๋ผ 17,039โˆผ23,070์›/tCO2์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ๋” ๋†’์€ WTA๋ฅผ ์ œ์‹œํ•  ๋•Œ ์‚ฐ์ฃผ์˜ ์ฐธ์—ฌ ๊ฐ€๋Šฅ์„ฑ์ด ๋” ๋†’์•„์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 1์›/tCO2์˜ ์ˆ˜์šฉ์˜์‚ฌ๊ธˆ์•ก์„ ๋” ์ œ์‹œ๋ฐ›์€ ์‚ฐ์ฃผ์ผ์ˆ˜๋ก, ์‚ฐ๋ฆผ์˜ ๊ฒฝ์ œ์  ๊ฐ€์น˜๋ณด๋‹ค ๊ณต์ต์  ๊ฐ€์น˜๋ฅผ ์„ ํ˜ธํ•˜๋Š” ์‚ฐ์ฃผ์ผ์ˆ˜๋ก, ๊ต์œก ์ˆ˜์ค€์ด ๋‚ฎ์€ ์ง‘๋‹จ๋ณด๋‹ค ๋†’์€ ์ง‘๋‹จ์˜ ์‚ฐ์ฃผ๊ฐ€ ์‚ฌ์—…์— ์ฐธ์—ฌํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ๋‹จ์œ„๋‹น ์ƒ์‚ฐ๋น„์šฉ์— ๋Œ€ํ•ด ์ž„๋ น๊ณผ ์ง€์œ„์ง€์ˆ˜๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์˜ ์ฐธ์—ฌ ์˜์‚ฌ์— ๋Œ€ํ•ด ์‚ฌ์—…์— ๋Œ€ํ•œ ๋…ธ๋ ฅ, ์†Œ์œ  ๋ฉด์ , ๋ถ€์žฌ ์‚ฐ์ฃผ ์—ฌ๋ถ€, ์—ฐ๋ น, ์„ฑ๋ณ„, ๊ฐ€๊ณ„ ์†Œ๋“, ์ˆ˜์ข…, ์ƒํƒœ์ž์—ฐ๋„, ์ž„๋ น, ๋„๋กœ ์ ‘๊ทผ์„ฑ์ด ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ผ, ์‚ฌ์œ ๋ฆผ์˜ ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ์ฐธ์—ฌ ๋ฐ ๊ณต๊ธ‰ ํ™•๋Œ€ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์‚ฐ์ฃผ๊ฐ€ ์‚ฐ๋ฆผํƒ„์†Œ๋ฐฐ์ถœ์ƒ์‡„๊ถŒ์„ ์ƒ์‚ฐํ•จ์œผ๋กœ์จ ๊ฐ๋‹นํ•ด์•ผํ•  ๊ธฐํšŒ๋น„์šฉ์— ๋Œ€ํ•œ ์ •์ฑ…์  ์ง€์›์ด ํ•„์š”ํ•˜๋‹ค. ๋‘˜์งธ, ๊ณต์ต๊ฐ€์น˜ ์ธ์‹ ์ œ๊ณ ๋ฅผ ์œ„ํ•œ ์ง€์›์ด ํ•„์š”ํ•˜๋‹ค. ์…‹์งธ, ๊ต์œก ์ˆ˜์ค€์ด ๋†’์€ ์‚ฐ์ฃผ๋ฅผ ์šฐ์„ ์ ์ธ ์ •์ฑ… ๋Œ€์ƒ์œผ๋กœ ๊ณ ๋ คํ•ด ๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ ๊ฒฐ๊ณผ๋Š” ์‹ค์งˆ์  ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์— ๋Œ€ํ•œ ์‚ฐ์ฃผ๋“ค์˜ ์ฐธ์—ฌ ๊ฐ€๋Šฅ์„ฑ์— ๊ด€ํ•œ ๊ธฐ์ดˆ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•œ ๊ฒƒ์œผ๋กœ ๊ธฐ์กด์— ์—†์—ˆ๋˜ ์—ฐ๊ตฌ๋กœ์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค.Considering that forests account for 67% of the territory in Korea, private forest owners' participation in carbon offset projects is crucial. This study identifies the factors to lower the production cost of forest carbon offset per unit. It derives the willingness to accept(WTA) of private forest owners participating in forest carbon offset projects. And It identifies characteristics with high participation potential. The study finds that species of trees and the size of a project area affect the issue cost. It also finds the higher the proportion of broadleaf tree is and the wider the size of the project area is, the lower the issue cost is. Meanwhile, the WTA of the private forest owner ranges from 17,039 to 23,070 KRW/tCO2 depending on the duration of the projects. The higher the value for WTA is, the more they are willing to participate in the project. The probability of participation in the projects increases according to the 1 KRW/tCO2 amount of WTA, the preference for the public value of the forest, the high education level. Therefore, the following findings are proposed to expand the participation and supply of the offset carbon offset projects in the private forests. First, policy-based support is required for the opportunity borne by the private forest owners providing the forest carbon offset credits. Second, support for promoting the public interest and awareness of the forests is necessary. Third, the policy should target the private forest owners with high education level first.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 1. ๊ธฐํ›„๋ณ€ํ™”์™€ ์‚ฐ๋ฆผ์˜ ์ค‘์š”์„ฑ 1 2. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์ œ๋„์™€ ๋ฐฐ์ถœ๊ถŒ๊ฑฐ๋ž˜์ œ 3 3. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 9 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  12 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ ์„ค๊ณ„์™€ ๊ตฌ์„ฑ 13 1. ์—ฐ๊ตฌ ์„ค๊ณ„ 13 2. ์—ฐ๊ตฌ ๊ตฌ์„ฑ 15 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 16 ์ œ 1 ์ ˆ ์ƒ์‚ฐ์ž ์ด๋ก  16 1. ์ƒ์‚ฐ๋ณ€ํ™˜๊ณก์„  16 2. ๋“ฑ์ˆ˜์ž…๊ณก์„ ๊ณผ ์ด์œค๊ทน๋Œ€ํ™” 18 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์‚ฌ 20 1. ์‚ฐ๋ฆผํƒ„์†Œ์‚ฌ์—… ๋ฐ ์‚ฐ๋ฆผ๋ณด์ „์‚ฌ์—…์— ๋Œ€ํ•œ ์ˆ˜์šฉ์˜์‚ฌ๊ธˆ์•ก 20 2. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ์ฐธ์—ฌ์— ๋Œ€ํ•œ ๊ธฐํšŒ๋น„์šฉ 22 ์ œ 3 ์žฅ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 24 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋Œ€์ƒ 24 1. ๋ชจ์ง‘๋‹จ๊ณผ ํ‘œ๋ณธ 24 2. ์—ฐ๊ตฌ๋Œ€์ƒ์ง€ ๊ฐœํ™ฉ 24 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ ๋ถ„์„ ํ‹€ 26 1. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์˜ ์ˆ˜์šฉ์˜์‚ฌ๊ธˆ์•ก 26 2. ๋ณด์ƒ๊ฐ€๊ฒฉ ์ƒํ•œ์„  ์„ค์ • 29 3. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ๋น„์šฉ 30 4 ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ์‚ฐ๋ฆผํƒ„์†Œ ํก์ˆ˜๋Ÿ‰ 32 5. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ๋น„์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ 35 6. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ์ฐธ์—ฌ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ 37 ์ œ 3 ์ ˆ ์„ค๋ฌธ์กฐ์‚ฌ ์„ค๊ณ„ 47 1. ์„ค๋ฌธ์ง€ ๊ตฌ์„ฑ 47 2. ์ž๋ฃŒ ์ˆ˜์ง‘ 48 ์ œ 4 ์ ˆ ๋ถ„์„ ๋ชจํ˜• 49 ์ œ 4 ์žฅ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 57 ์ œ 1 ์ ˆ ์‘๋‹ต์ž์˜ ์ผ๋ฐ˜ ํ˜„ํ™ฉ ๋ฐ ํ‘œ๋ณธ์˜ ๋Œ€ํ‘œ์„ฑ 57 1. ์ธ๊ตฌํ†ต๊ณ„ํ•™์ ยท์‚ฌํšŒ๊ฒฝ์ œ์  ํŠน์„ฑ 57 2. ์‚ฐ์ฃผํŠน์„ฑ, ์ž์›ํŠน์„ฑ ๋ฐ ์œ„์น˜ํŠน์„ฑ 59 3. ํ‘œ๋ณธ์˜ ๋Œ€ํ‘œ์„ฑ 62 ์ œ 2 ์ ˆ ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ๋น„์šฉ ๊ฒฐ์ • ์š”์ธ 63 1. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ๋น„์šฉ๋ถ„์„ 63 2. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์˜ ๋น„์šฉ ๊ฒฐ์ • ์š”์ธ 64 ์ œ 3 ์ ˆ ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—… ์ฐธ์—ฌ ์˜ํ–ฅ๊ณผ ๊ฒฐ์ • ์š”์ธ 70 1. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์— ๋Œ€ํ•œ ์ฐธ์—ฌ ์˜ํ–ฅ 70 2. ์ˆ˜์šฉ์˜์‚ฌ๊ธˆ์•ก ์กฐ์‚ฌ ๊ฒฐ๊ณผ 71 3. ์‚ฐ๋ฆผํƒ„์†Œ์ƒ์‡„์‚ฌ์—…์˜ ์ง€์† ์ฐธ์—ฌํ™•๋ฅ  ๊ฒฐ์ • ์š”์ธ 73 ์ œ 4 ์ ˆ ๊ณ ์ฐฐ 79 1. ์—ฐ๊ตฌ๊ฐ€์„ค ๊ฒ€์ •๊ฒฐ๊ณผ 79 2. ์‚ฐ์ฃผ์˜ ์ง€์†์  ์ฐธ์—ฌ ๊ฒฐ์ • ๊ณผ์ • 79 ์ œ 5์žฅ ๊ฒฐ๋ก  83 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 87 ๋ถ€ ๋ก 97 Abstract 114Maste

    Prolyl-tRNA Synthetase๋ฅผ ํ‘œ์ ์œผ๋กœ ํ•˜๋Š” ์•” ์–ต์ œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› : ๋ถ„์ž์˜ํ•™ ๋ฐ ๋ฐ”์ด์˜ค์ œ์•ฝํ•™๊ณผ, 2014. 8. ๊น€์„ฑํ›ˆ.Lung cancer is the most common cancer in terms of both incidence and mortality. Despite intensive investigation, effective therapeutic target and reliable compounds are still limited. Here, I discovered bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) included in protein synthesis as a potential cancer target and its specific inhibitors using validated assay systems. EPRS is highly expressed in a variety of cancers including lung cancer and also involved in cancer metastasis and angiogenesis. Recently, halofuginone (HF) was identified as a compound binding with EPRS concomitant with inhibiting prolyl-tRNA synthetase (PRS) catalytic activity although HF has a poor drug-likeness and high cytotoxicity. In order to find novel compound which has improved druggability, I have screened PRS inhibitors using HF as a reference compound. Hundreds of compounds were synthesized by inherent synthetic strategy to maximize druggability and selected by analysis systems such as in vitro enzyme assay, proliferation, migration and cell death. Finally I identified effective 3 hit compounds controlling PRS catalytic activity as well as cell viability. Taken together, this study suggested the validation of anti-cancer targets and plausible anti-cancer therapeutic tools.ABSTRACT 1 CONTENTS 2 LIST OF FIGURES 4 LIST OF TABLES 5 INTRODUCTION 6 MATERIALS AND METHODS 8 Materials 8 Aminoacylation assay 8 Cell culture 9 Cell proliferation assay 10 Cell death assay 10 Wound healing assay 10 RESULTS 12 The EPRS is highly expressed in lung cancer. 12 Strategy for the development of novel PRS specific inhibitor 12 PRS aminoacylation assay for specific inhibitor screening 13 The hit compounds inhibit cell proliferation 13 The effect of the hit compounds on cell migration 14 The hit compounds lead to cell death 14 DISCUSSION 27 REFERENCES 29 ์š”์•ฝ(๊ตญ๋ฌธ์ดˆ๋ก) 32Maste

    ์ง‘ํšŒ์˜ ์ž์œ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฒ•ํ•™๊ณผ,2010.2.Maste

    (An)Animal model of calcium oxalate urolithiasis based on a cyclooxygenase-2-selective inhibitor

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋น„๋‡จ๊ธฐ๊ณผํ•™์ „๊ณต,2005.Maste

    ๋Œ€๋‘ ์ด์†Œํ”Œ๋ผ๋ณธ ์ œ๋„ค์Šคํ…Œ์ธ ํ”ผํ•˜์ด์‹์— ๋”ฐ๋ฅธ ๊ฑฐ์„ธ ๋ฐฑ์„œ์˜ ์ง€๋ฐฉ ํ•ฉ์„ฑ ๊ด€๋ จ ์œ ์ „์ž ๋ฐœํ˜„์–‘์ƒ

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋†์ƒ๋ช…๊ณตํ•™๋ถ€,2007.Maste

    ๋‹จ์ธต ์ „์ด๊ธˆ์†์นผ์ฝ”๊ฒŒ๋‚˜์ด๋“œ์—์„œ ์นผ์ฝ”๊ฒ ์  ๊ฒฐํ•จ์˜ ์›์ž ๋‹จ์œ„ ์น˜์œ 

    No full text
    Master๋ณธ ์—ฐ๊ตฌ๋Š” ํ•ฉ์„ฑ๋œ ์ด์ฐจ์› ์ „์ด๊ธˆ์†์นผ์ฝ”๊ฒŒ๋‚˜์ด๋“œ (TMDCs)์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํ•˜๊ฒŒ ์กด์žฌํ•˜๋Š” ์  ๊ฒฐํ•ฉ์ธ ์นผ์ฝ”๊ฒ ์  ๊ฒฐํ•จ (vacancy)์„ ์น˜์œ ํ•˜๋Š” ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•œ๋‹ค. ๊ณต์ •์€ ํฌ๊ฒŒ ๋‘ ๋‹จ๊ณ„๋กœ, ๋จผ์ € ์œ ๊ธฐ๊ธˆ์†ํ™”ํ•™์ฆ์ฐฉ๋ฒ• (MOCVD)์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์œ ๊ธฐ๊ธˆ์†์ „๊ตฌ์ฒด๋ฅผ ๊ณต๊ธ‰ํ•˜์—ฌ ์นผ์ฝ”๊ฒ ์ถ”๊ฐ€ ์ธต์„ ํ•ฉ์„ฑ๋œ ์ด์ฐจ์› ์ „์ด๊ธˆ์†์นผ์ฝ”๊ฒŒ๋‚˜์ด๋“œ์— ์ฆ์ฐฉํ•œ ๋‹ค์Œ, ์ง„๊ณต์—์„œ ๊ฐ€์—ด์„ ํ†ตํ•ด ์ธต์„ ์ œ๊ฑฐํ•ด์ค€๋‹ค. ๊ณต์ •์— ์‚ฌ์šฉ๋œ ์ „์ด๊ธˆ์†์นผ์ฝ”๊ฒŒ๋‚˜์ด๋“œ๋Š” ์—ด์ ํ™”ํ•™๊ธฐ์ƒ์ฆ์ฐฉ (thermal CVD)์œผ๋กœ ํ•ฉ์„ฑ๋œ ๋‹จ์ธต WSe2์™€ MoS2์ด๋‹ค. ํˆฌ๊ณผ์ „์žํ˜„๋ฏธ๊ฒฝ (TEM) ๋ถ„์„์„ ํ†ตํ•ด ํšŒ์ ˆ ํŒจํ„ด์„ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ, ์ถ”๊ฐ€ ์ฆ์ฐฉ๋œ ์นผ์ฝ”๊ฒ ์ธต์€ ๋น„์ •์งˆ์ด๋‹ค. ์ง‘์†์ด์˜จ๋น” (FIB) ๊ณต์ •์œผ๋กœ (11-20)๋ฉด์— ํ•ด๋‹นํ•˜๋Š” WSe2์˜ ์‚ผ๊ฐํ˜• ์ˆ˜์ง ๋ฐฉํ–ฅ์„ ๋”ฐ๋ผ ์–ป์€ ๋‹จ๋ฉด ์‹œํŽธ์—์„œ๋Š” WSe2์™€ ์ถ”๊ฐ€ ์ฆ์ฐฉ๋œ ์…€๋ ˆ๋Š„ ์ธต์˜ ๊ณ„๋ฉด์˜ ์ด๋ฏธ์ง€๋ฅผ ์ฃผ์‚ฌํˆฌ๊ณผ์ „์žํ˜„๋ฏธ๊ฒฝ (STEM)์œผ๋กœ ๊ด€์ฐฐํ•˜์˜€๊ณ , ์•ฝ 30nm ์ดํ•˜ ๋‘๊ป˜์˜ ์…€๋ ˆ๋Š„ ์ธต์ด ์ฆ์ฐฉ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๊ณต์ •์ด ์›์ž ๋‹จ์œ„์˜ ์  ๊ฒฐํ•จ ์น˜์œ  ๊ณต์ •์ž„์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ €์˜จ ๊ด‘๋ฃจ๋ฏธ๋„ค์„ผ์Šค (Low-temperature photoluminescence)๋ฅผ ์ธก์ •ํ•˜์˜€๊ณ , ๊ตญ๋ถ€ ์—ฌ๊ธฐ์ž (localized exciton emission)์™€ ๊ด€๋ จํ•œ ํ”ฝ์˜ ์„ธ๊ธฐ๊ฐ€ ๊ฐ์†Œํ•จ์„ ํ†ตํ•ด ์  ๊ฒฐํ•จ์ด ์น˜์œ ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, FET ์ „๊ธฐ์  ์ธก์ •์„ ํ†ตํ•ด ํ”ํžˆ ์•Œ๋ ค์ง„ nํ˜• ๋ถˆ์ˆœ๋ฌผ (n-dopant)๋กœ ์•Œ๋ ค์ง„ ์นผ์ฝ”๊ฒ ์  ๊ฒฐํ•จ์˜ ์–‘์ด ์ค„์–ด๋“ , ์ฆ‰, p-๋„ํ•‘์ด ๋˜๋Š” ํ˜„์ƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์›์ž ์ •๋ฐ€๋„๋กœ ์  ๊ฒฐํ•จ์˜ ์–‘์„ ์ œ์–ดํ•จ์œผ๋กœ์จ ๊ณ ์„ฑ๋Šฅ์˜ ํฌํ† ๋‹‰์Šค ๋ฐ ์ผ๋ ‰ํŠธ๋กœ๋‹‰์Šค์— ์‘์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํ”Œ๋žซํผ์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค.Two-dimensional (2D) transition-metal dichalcogenide (TMDC) semiconductors are the atomically thin platforms for a new type of photonics. Therein, atomic-scale deformations such as point defects and grain boundaries, often generate novel 2D physical properties. For example, single point defects in WSe2 and WS2 monolayers (MLs) serve as sources for single-photon emissions or electronic dopants, and mirror twin boundaries in MoSe2 MLs provide topologically protected edge-states. In order to exploit these local physical properties into practical device platforms, such atomic-scale deformations must be deterministically controlled in the 2D host lattices of TMDC MLs. Here, we report a simple process for the healing of chalcogen point vacancies on the synthetic ML WSe2 and MoS2 by metal-organic passivation. We verified such atomic healing process from substantial reduction of the localized exciton states by low temperature photoluminescence. Our work suggests steps to realize the higher quality photonics with atomic precision
    • โ€ฆ
    corecore