30 research outputs found

    ์‹์ค‘๋…๊ท  ๋‹ค์ค‘ ๊ฒ€์ถœ ๋ฐ ์‹๋ณ„์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ฐจ์„ธ๋Œ€ ์‹œํ€€์‹ฑ ํŒจ๋„ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2023. 2. ์ด์ฃผํ›ˆ.๋ณต์žกํ•œ ๊ท  ์ด์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์‹ํ’ˆ ์†์—์„œ ์‹์ค‘๋… ์‚ฌ๊ณ ์˜ ์›์ธ ๊ท  ๋งŒ์„ ๊ฐ์ง€ํ•˜๊ณ  ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์€ ์ค‘์š”ํ•˜๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ์‹์ค‘๋…๊ท  ๊ฒ€์ถœ ๋ฐ ์‹๋ณ„ ๊ธฐ์ˆ ์€ ์œ„์™€ ๊ฐ™์€ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•ด์™”์ง€๋งŒ, ๋™์‹œ๋‹ค๋ฐœ์ ์œผ๋กœ ๋‹ค์–‘ํ•œ ์‹์ค‘๋…๊ท ์„ ๊ฒ€์ถœํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ํ•œ๊ณ„์ ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋”ฐ๋ผ์„œ, ํ•œ ๋ฒˆ์˜ ๋ฐ˜์‘์œผ๋กœ ๋‹ค์–‘ํ•œ ์‹์ค‘๋… ์›์ธ ๊ท ์„ ํšจ์œจ์ ์œผ๋กœ ์„ ๋ณ„ํ•˜๊ณ  ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ณด๊ณ ๋œ NGS ํŒจ๋„ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ์‹์ค‘๋…๊ท  ๊ฒ€์ถœ ๋ฐ ์‹๋ณ„ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 2 ๊ฐ€์ง€์˜ NGS ํŒจ๋„๋กœ ๊ฐ๊ฐ 6 ์ข… ๋ฐ 7 ์ข…์˜ ์‹์ค‘๋…๊ท  (์„ธํŠธ1: Bacillus cereus, Yersinia enterocolitica, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus ๋ฐ Vibrio vulnificus, ์„ธํŠธ2: Listeria monocytogenes, Salmonella enterica serovar Typhimurium, enteropathogenic Escherichia coli [EPEC], enteroinvasive E. coli [EIEC], enterotoxigenic E. coli [ETEC], enterohemorrhagic E. coli [EHEC], ๋ฐ enteroaggregative E. coli [EAEC clinical (EAEC)])์•ˆ์—์„œ 18 ๊ฐœ ๋ฐ 13 ๊ฐœ์˜ ํŠน์ด์ ์ธ ๋…์„ฑ ์ธ์ž ์œ ์ „์ž๋ฅผ ํ‘œ์ ์œผ๋กœ ํ•˜๋Š” ์ƒˆ๋กœ์šด NGS ํŒจ๋„ ํ”„๋ผ์ด๋จธ ์„ธํŠธ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ์ตœ์ ํ™”ํ–ˆ๋‹ค. ํ”„๋ผ์ด๋จธ ์„ธํŠธ๋ฅผ ์ด์šฉํ•œ ์‹ฑ๊ธ€ํ”Œ๋ ‰์Šค PCR์—์„œ๋Š” ์˜ˆ์ธก๋œ ํฌ๊ธฐ์˜ ๋‹จ์ผ PCR ์•ฐํ”Œ๋ฆฌ์ฝ˜์ด ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ดํ›„์˜ ๊ต์ฐจ ํ™•์ธ ๋ฐ ๋ฉ€ํ‹ฐํ”Œ๋ ‰์Šค PCR์—์„œ๋Š” ๋น„ํŠน์ด์  ํ”„๋ผ์ด๋จธ ์„ธํŠธ ๋˜๋Š” ๋น„ํŠน์ด์  ์‹์ค‘๋… ๊ท ์˜ DNA์— ์˜ํ•œ ๊ฐ„์„ญ์ด ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•„ ์ƒˆ๋กœ์šด ํ”„๋ผ์ด๋จธ ์„ธํŠธ์˜ ํŠน์ด์„ฑ๊ณผ ์„ ํƒ์„ฑ์„ ํ™•์ธํ–ˆ๋‹ค. ์ดํ›„, ์ƒˆ๋กœ์šด NGS ํŒจ๋„ ๋ฐฉ๋ฒ•์˜ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์ˆ˜์ง‘๋œ 6๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋†์—…์šฉ์ˆ˜ ์ƒ˜ํ”Œ๊ณผ 6๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐœํšจ์‹ํ’ˆ์— ๊ฐ๊ฐ 6 ์ข…๊ณผ 7 ์ข…์˜ ์‹์ค‘๋…๊ท ์„ ๋™์‹œ ์˜ค์—ผ์‹œํ‚จ ํ›„ NGS ํŒจ๋„ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋†์—…์šฉ์ˆ˜์—์„œ๋Š” 108~105 CFUs ์ˆ˜์ค€์—์„œ 18 ๊ฐœ์˜ ํ‘œ์  ์œ ์ „์ž๊ฐ€, ๋ฐœํšจ์‹ํ’ˆ์—์„œ๋Š” ์‹์ค‘๋…๊ท  ์ข… ๋‹น 108~107 CFUs ์ˆ˜์ค€์—์„œ 13 ๊ฐœ์˜ ํ‘œ์  ์œ ์ „์ž๊ฐ€ ๋‹ค์ค‘ ๊ฒ€์ถœ ๋ฐ ์‹๋ณ„๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๋…์„ฑ ์ธ์ž ์œ ์ „์ž์˜ ํ‰๊ท  ์ด ์„œ์—ด ํŒ๋… ํšŸ์ˆ˜๋Š” ํ‘œ์  ๋ณ‘์›์ฒด๋‹น CFU์™€ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, NGS ํŒจ๋„ ๋ถ„์„์€ ํ•œ ๋ฐ˜์‘์—์„œ ๋‹ค์–‘ํ•œ ์ข…์˜ ์‹์ค‘๋…๊ท ์„ ๋™์‹œ ๊ฒ€์ถœํ•˜๋Š” ์ด์ ์„ ๋ณด์—ฌ์ฃผ์—ˆ์ง€๋งŒ, ์ ์€ CFU (ํฌ์„ ๊ณ„์ˆ˜ 106-105)์˜ ์‹์ค‘๋…๊ท ์ด ์˜ค์—ผ๋œ ์ƒ˜ํ”Œ์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ๋„์™€ ์œ„์–‘์„ฑ ๊ฒฐ๊ณผ๊ฐ€ ๋ฐœ์ƒํ–ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, NGS ํŒจ๋„ ๊ฒฐ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋™์ผํ•œ ์˜ค์—ผ๋œ ๋†์—…์šฉ์ˆ˜ ๋ฐ ๋ฐœํšจ์‹ํ’ˆ ์ƒ˜ํ”Œ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‘๊ฐ€์ง€ ์„ธํŠธ ๋ฐ ์„ธ๊ฐ€์ง€ ์„ธํŠธ์˜ qPCR ๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ์œผ๋ฉฐ, ํ‘œ์  ๋ณ‘์›์ฒด ๊ฒ€์ถœ ๋ฐ ์‹๋ณ„์˜ ํšจ์œจ์„ฑ ๋ฐ ํŠน์ด์„ฑ์€ NGS ํŒจ๋„ ๋ถ„์„๊ณผ ์œ ์‚ฌํ–ˆ๋‹ค. ๋น„๊ต ํ†ต๊ณ„ ๋ถ„์„ ๋ฐ Spearman ์ƒ๊ด€ ๋ถ„์„์€ NGS ํŒจ๋„ ์„œ์—ด ํŒ๋… ํšŸ์ˆ˜์™€ qPCR ์ฃผ๊ธฐ ์ž„๊ณ„๊ฐ’(Ct) ๊ฐ’์ด ์Œ์˜ ์—ฐ๊ด€์ด ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ ๊ฒฐ๊ณผ์˜ ์œ ์‚ฌ์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ณด๋‹ค ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ๊ฒ€์ถœ ๋ฐ ์‹๋ณ„์„ ์œ„ํ•ด NGS ํŒจ๋„ ๋ถ„์„์„ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๋ฉด NGS ํŒจ๋„ ํ”„๋ผ์ด๋จธ ์„ธํŠธ์˜ ์ถ”๊ฐ€์ ์ธ ์ตœ์ ํ™”์™€ ์‹ค์‹œ๊ฐ„ NGS ์‹œํ€€์‹ฑ ๊ธฐ์ˆ ์˜ ๋„์ž…์ด ํ•„์š”ํ•˜๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์œ„ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์‹ํ’ˆ ๋งค๊ฐœ ๋ณ‘์›์ฒด์˜ ๋‹ค์ค‘ ๊ฒ€์ถœ์„ ์œ„ํ•œ NGS ํŒจ๋„ ๋ถ„์„์˜ ์ ์šฉ์— ๋Œ€ํ•œ ์ž ์žฌ๋ ฅ๊ณผ ์ด์ ๋“ค์„ ํ™•์ธํ•˜์˜€๋‹ค.Detecting and identifying the bacterial origin of foodborne pathogen outbreaks is challenging. However, the NGS panel method could potentially be used to efficiently screen and identify the outbreak origin of various bacteria in one reaction. In this study, two sets of new NGS panel primer sets targeting 18 and 13 specific virulence factor genes from (a) Bacillus cereus, Yersinia enterocolitica, Staphylococcus aureus, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus (b) five types of pathogenic Escherichia coli (enteropathogenic E. coli [EPEC], enteroinvasive E. coli [EIEC], enterotoxigenic E. coli [ETEC], enterohemorrhagic E. coli [EHEC], and enteroaggregative E. coli [EAEC clinical (EAEC)])), Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively, were developed and optimized. Singleplex PCR with the primer sets revealed a single PCR amplicon with the expected size, and a subsequent crosscheck and multiplex PCR revealed no interference in the primer set mixture or pathogenic DNA mixture, thereby confirming the specificity and selectivity of the new primer sets. In an evaluation of the new NGS panel method, six collected agricultural water samples were contaminated with the six selected foodborne pathogens, and six collected fermented food samples were contaminated with the seven selected foodborne pathogens. NGS panel analysis revealed that 18 target genes were multi-detected in one reaction at 108 to 105 CFUs per target pathogen and 13 target genes were multi-detected in one reaction at 108 to 107. Interestingly, the average total sequence read counts from the virulence factor genes were positively associated with the CFUs per target pathogen. Although the NGS panel analysis indicated the advantage of multiple pathogen detection in one reaction, relatively low sensitivity and false positive results occurred with few CFUs (dilution factor of 105 in agricultural water and 106-105 in fermented foods) of the target pathogens. To validate the multiple detection and identification results, two sets and three sets of qPCR analyses were independently performed using the same contaminated agricultural water samples and fermented food samples, respectively, and the efficiency and specificity of target pathogen detection and identification were like those in the NGS panel analysis. Indeed, comparative statistical analysis and Spearman correlation analysis revealed that the NGS panel sequence read counts and qPCR cycle threshold (Ct) values were negatively associated, supporting the similarity of the results. To further improve NGS panel analysis for more rapid and accurate detection and identification, the NGS panel primer sets must be further optimized and real-time NGS sequencing technology should be used. Nevertheless, this study provides new insights into the application of NGS panel analysis for the multiple detection of foodborne pathogens.1. Introduction 1 2. Materials and Methods 8 2.1. Bacterial strains, media, and growth conditions 8 2.2. Isolation of foodborne pathogens 9 2.3. DNA extraction 11 2.4. 16S rRNA gene sequencing 12 2.5. Pathogenic identification of E. coli using PCR 13 2.6. Genome sequencing and analysis 13 2.7. NGS panel primer design and optimization 14 2.8. Singleplex PCR and crosscheck PCR 15 2.9. Multiplex PCR 16 2.10. Collection of agricultural water samples and the preparation of contaminated water samples with selected pathogens 17 2.11. Collection of fermented food samples and the preparation of contaminated fermented food samples with selected pathogens 18 2.12. NGS panel analysis 20 2.13. Quantitative real-time PCR (qPCR) 21 2.14. Statistical analysis 22 3. Results 23 3.1. NGS panel set 1: multiple detection and identification of foodborne pathogens in agricultural water 23 3.1.1. Isolation and identification of foodborne pathogens 23 3.1.2. General genome features of selected foodborne pathogens and the design of primer sets 24 3.1.3. Validation of designed primer sets 29 3.1.3.1 Singleplex PCR 29 3.1.3.2 Crosscheck PCR 31 3.1.3.3 Multiplex PCR 35 3.1.4. NGS panel analysis 37 3.1.5. qPCR analysis 51 3.1.6. Comparative evaluation of NGS panel analysis and qPCR 51 3.2. NGS panel set 2: multiple detection and identification of foodborne pathogens in fermented foods 61 3.2.1. Isolation and identification of foodborne pathogens 61 3.2.2. General genome features of selected foodborne pathogens and the design of primer sets 63 3.2.3. Validation of designed primer sets 68 3.2.3.1 Singleplex PCR 68 3.2.3.2 Crosscheck PCR 70 3.2.3.3 Multiplex PCR 74 3.2.4. NGS panel analysis 76 3.2.5. qPCR analysis 89 3.2.6. Comparative evaluation of NGS panel analysis and qPCR 96 4. Discussion 99 5. References 102 ๊ตญ๋ฌธ์ดˆ๋ก 112์„

    ์กฐ๊ตญํ†ต์ผ๋ฐฉ๋„์˜ ๋ชจ์ƒ‰

    Get PDF
    ์—ฌ๋Ÿฌ๋ถ„! ํ†ต์ผ์˜ ์—ด๋ง์„ ์•ˆ๊ณ  ๋‚จ์กฐ์„ ๊ณผ ํ•ด์™ธ ์—ฌ๋Ÿฌ ๊ณณ์—์„œ ์˜ค์‹  ์„ ์ƒ๋‹˜๋“ค๊ณผ ์ด๋ ‡๊ฒŒ ์ž๋ฆฌ๋ฅผ ๊ฐ™์ดํ•˜๊ณ  ํ†ต์ผํ† ๋ก ํšŒ๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋œ ๋ฐ ๋Œ€ํ•˜์—ฌ ์šฐ๋ฆฌ๋Š” ๋งค์šฐ ๊ธฐ์˜๊ฒŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๋ถ์—์„œ ์˜จ ์ €ํฌ๋“ค์€ ์ง€๊ธˆ๊นŒ์ง€ ํ•ด์™ธ์— ๊ณ„์‹œ๋Š” ํ•™์ž๋“ค๊ณผ๋Š” ์—ฌ๋Ÿฌ ๋ฒˆ ๋งŒ๋‚˜ ํ†ต์ผ์— ๋Œ€ํ•˜์—ฌ ์ด์•ผ๊ธฐ๋ฅผ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ ์˜ค๋Š˜์ฒ˜๋Ÿผ ํ•ด์™ธ ํ•™์ž๋ฟ ์•„๋‹ˆ๋ผ ๋‚จ์กฐ์„  ํ•™์ž๋“ค๊ณผ๋„ ๋งŒ๋‚˜ ํ•œ ์ž๋ฆฌ์—์„œ ๋ฏผ์กฑ์˜ ๋Œ€๋‹จ๊ฒฐ๊ณผ ํ†ต์ผ๋ฐฉ๋„์— ๋Œ€ํ•˜์—ฌ ์—ฌ๋Ÿฌ๋ชจ๋กœ ์ง„์ง€ํ•˜๊ฒŒ ์˜๊ฒฌ์„ ๋‚˜๋ˆ„๊ธฐ๋Š” ์ฒ˜์Œ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๋ถ๊ณผ ๋‚จ, ํ•ด์™ธ๋™ํฌ ํ•™์ž๋“ค์ด ๋‹ค ๊ฐ™์ด ์ฐธ์„ํ•œ ์˜ค๋Š˜์˜ ํ†ต์ผํ† ๋ก ํšŒ๋Š” ๋น„๋ก ์†Œ๋ฐ•ํ•˜๊ณ  ์ฐจ๋ถ„ํ•˜๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ์ง€๋งŒ ๋ถ๊ณผ ๋‚จ๏ผŒ ํ•ด์™ธ์—์„œ ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š” ํ†ต์ผ๋…ธ๋ ฅ์„ ๋ฏผ๊ฐ„๊ธ‰์—์„œ ๊ฒฐ์ง‘์‹œ์ผœ ๋‚˜๊ฐ€๋Š” ๋ฐ์„œ ์‹ค๋กœ ์ž‘์ง€ ์•Š์€ ์˜์˜๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋  ๊ฒƒ์œผ๋กœ ํ™•์‹ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ €๋Š” ์˜ค๋Š˜์˜ ์ด ์†Œ์ค‘ํ•œ ๋ชจ์ž„์„ ๋งˆ๋ จํ•˜์‹œ๊ณ  ํ† ๋ก ํšŒ์˜ ์„ฑ๊ณผ์  ์ง„ํ–‰์„ ์œ„ํ•˜์—ฌ ์˜จ๊ฐ– ํŽธ์˜๋ฅผ ๋‹ค ๋Œ๋ณด๊ณ  ๊ณ„์‹œ๋Š” ์ฃผ์ตœ ์ธก์— ๋œจ๊ฑฐ์šด ์ธ์‚ฌ๋ฅผ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์ €๋Š” ์ด ๋œป๊นŠ์€ ์ž๋ฆฌ์—์„œ ๋จผ์ € ์šฐ๋ฆฌ ์กฐ๊ตญ์˜ ํ†ต์ผ์„ ์œ„ํ•˜์—ฌ ๋ˆ„๊ตฌ๋ณด๋‹ค๋„ ๋งŽ์€ ์‹ฌํ˜ˆ์„ ๊ธฐ์šธ์ด์‹œ๊ณ  ํ†ต์ผ๋กœ์ƒ์— ๋ถˆ๋ฉธ์˜ ์—…์ ์„ ๋‚จ๊ธฐ์‹  ๊ฒฝ์• ํ•˜๋Š” ์ˆ˜๋ น ๊น€์ผ์„ฑ ํ†ต์ง€์˜ ๋กœ๊ณ ์— ๋Œ€ํ•˜์—ฌ ๋‹ค์‹œ ํ•œ๋ฒˆ ๋Œ์ด์ผœ ๋ณด๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๋“ค๋„ ๋‹ค ์ž˜ ์•Œ๊ณ  ๊ฒŒ์‹œ๋Š” ๋ฐ”์™€ ๊ฐ™์ด ๊ฒฝ์• ํ•˜๋Š” ์ˆ˜๋ น๋‹˜๊ป˜์„œ๋Š” ์˜์ƒ๋ถˆ๋ฉธ์˜ ์ฃผ์ฒด์‚ฌ์ƒ์— ๊ธฐ์ดˆํ•˜์‹œ์—ฌ ์กฐ๊ตญํ†ต์ผ์— ๊ด€ํ•œ ์‚ฌ์ƒ๊ณผ ๋ฆฌ๋ก ์˜ฌ ์ „๋ฉด์ ์œผ๋กœ ๋ฐํžˆ์‹œ๊ณ  ํŠนํžˆ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ตฌ์ฒด์  ์‹ค์ •์œผ๋กœ๋ถ€ํ„ฐ ์ถœ๋ฐœํ•˜์‹œ์–ด ๋ จ๋ฐฉ์ œ๋ฐฉ์‹์œผ๋กœ ์กฐ๊ตญ์˜ฌ ํ†ต์ผํ•  ๋ฐ ๋Œ€ํ•œ ๋ฆฌ๋ก ์„ ๋…์ฐฝ์ ์œผ๋กœ ๋ฐํžˆ์‹œ์—ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฝ์• ํ•˜๋Š” ์ˆ˜๋ น๋‹˜๊ป˜์„œ ์•ˆ๊ฒจ์ฃผ์‹  ์กฐ๊ตญํ†ต์ผ ๋ฆฌ๋ก ๊ณผ ๋ จ๋ฐฉ์ œ ํ†ต์ผ๋ฐฉ์•ˆ์€ ์šฐ๋ฆฌ๊ฒจ๋ ˆ๊ฐ€ ๋ฐ›์•„์•ˆ์€ ๊ณ ๊ท€ํ•œ ์œ ์‚ฐ์˜ ํ•œ ๋ถ€๋ถ„์ด๊ณ  ํ†ต์ผ์˜ ์„ฑ์Šค๋Ÿฌ์šด ๊ธธ์—์„œ ์–ธ์ œ๋‚˜ ์•ž์žฅ์„œ ์žˆ์–ด์•ผ ํ•  ์ €ํšŒ๋“ค ํ•™์ž๋“ค์ด ์†Œ์ค‘ํžˆ ๊ฐ„์งํ•˜์—ฌ์•ผ ํ•  ์šฐ๋ฆฌ ๋ฏผ์กฑ์˜ ์ •์‹ ์  ์žฌ๋ถ€์˜ ํ•˜๋‚˜๋ผ๊ณ  ์ธ์ •ํ•ฉ๋‹ˆ๋‹ค

    ํ†ต์ผ์˜ ๋ฐฉ์‹ - ํ† ๋ก 

    Get PDF
    ์ด์ •์‹(์‚ฌํšŒ, ๋ฏธ๊ตญ ํŽœ์‹ค๋ฒ ๋‹ˆ์•„๋Œ€ํ•™ ์ •์น˜ํ•™๊ณผ ๊ต์ˆ˜): ํšŒ์˜๋ฅผ ์†๊ฐœํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์•„๊นŒ ์ฃผ์ตœ์ธก์˜ ๋ง์”€์ด ์˜คํ›„๋Š” ์ข…ํ•ฉํ† ๋ก ์ธ๋ฐ ์—ญ์‹œ ํ† ๋ก ์ด๋‹ˆ๊นŒ ์•„์นจ์— ๋‚จ์€ ์‹œ๊ฐ„ 1์‹œ๊ฐ„ 30๋ถ„ ๋™์•ˆ์˜ ํ† ๋ก ์„ ์˜คํ›„์— ๊ณ„์†ํ•˜๋Š” ํ˜•์‹์ด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์‹œ๊ฐ„์˜ ์ œ์•ฝ์„ ๋„ˆ๋ฌด ๋ฐ›์ง€ ๋ง๊ณ  ํ† ๋ก ์„ ํ•˜๋„๋ก ํ•˜๊ณ  ์งˆ๋ฌธ์„ ํ•˜์‹ค ๊ฒฝ์šฐ์— ํ‰์–‘์—์„œ ์˜ค์‹  ๋ถ„๋“ค๊ป˜์„œ๋Š” ๋Œ€๋‹ต์„ ์˜คํ›„์— ํ•˜์‹œ๋ฉด ์ข‹๊ฒ ๋‹ค๋Š” ๋ง์”€์ด ๊ณ„์…”์„œ ๊ทธ๋Ÿฌ๋ฉด ์ง€๊ธˆ ๋Œ€๋‹ต์„ ํ•˜์…”๋„ ์ข‹๊ณ  ์œ ๋ณดํ•˜์…จ๋‹ค๊ฐ€ ์˜คํ›„์— ํ•˜์…”๋„ ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์‚ฌํšŒ์ž๋กœ์„  ํŠน๋ณ„ํžˆ ๋ง์”€๋“œ๋ฆด ๊ฒƒ์€ ์—†์Šต๋‹ˆ๋‹ค๋งŒ ์—ฌ๋Ÿฌ๋ถ„๋“ค์˜ ๋ฐœํ‘œ๋ฅผ ๋“ฃ๊ณ  ์žˆ์œผ๋ฉด์„œ ํ•œ๊ฐ€์ง€๋งŒ ๋ง์”€๋“œ๋ฆฌ๋ ค๊ณ  ํ•˜๋Š” ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ํ†ต์ผ์ด๋ผ๋Š” ์–˜๊ธฐ๋ฅผ ํ•˜๋Š”๋ฐ ๊ณผ์—ฐ ํ†ต์ผ์ด ๋ฌด์—‡์ธ๊ฐ€, ํ†ต์ผ์ด ๋˜์—ˆ์„ ๋•Œ ๊ทธ ํ˜•ํƒœ๊ฐ€ ๋ฌด์—‡์ธ๊ฐ€ ํ•˜๋Š” ๊ฒƒ์„ ๋ณ„๋กœ ์ •์˜๋ฅผ ๋‚ด๋ฆฌ์ง€ ์•Š๊ณ  ์šฐ๋ฆฌ๊ฐ€ ํ† ๋ก ์„ ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ญ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๊ทธ๋Ÿฐ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ข€ ํ† ์˜๊ฐ€ ๋์œผ๋ฉด ์ข‹๊ฒ ๋Š”๋ฐ ๋ถ์ชฝ์—์„œ ๋ง์”€ํ•˜์‹œ๊ณ  ์žˆ๋Š” ํ†ต์ผ์ด๋ผ๋Š” ๊ฒƒ์€ ์—ญ์‹œ ์—ฐํ•ฉ์ œ๊ฐ€ ์„ฑ๋ฆฝ๋œ ๋งํ•˜์ž๋ฉด 1๋ฏผ์กฑ 1๊ตญ๊ฐ€ 2์ฒด์ œ๊ฐ€ ํ†ต์ผ์ด๊ณ  ์ด๋‚จ์—์„œ ์–˜๊ธฐํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€ 1๋ฏผ์กฑ 1๊ตญ๊ฐ€ 1์ฒด์ œ์ž…๋‹ˆ๋‹ค
    corecore