20 research outputs found

    A MR angiographic study of stenosis and aneurysm models in the pulsatile flow

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋ฐฉ์‚ฌ์„ ๊ณผํ•™์ „๊ณต,1997.Docto

    ๊ตฌ๋ฆฌ ๋ฌด์ „ํ•ด ๋„๊ธˆ ์šฉ์•ก์˜ ์‹ค์‹œ๊ฐ„ ํˆฌ๊ณผ์œจ ํ‰๊ฐ€ ๋ฐ ๊ทธ ์‘์šฉ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2013. 8. ๊น€์žฌ์ •.๊ตฌ๋ฆฌ ๋ฌด์ „ํ•ด ๋„๊ธˆ์€ ๊ทน๋Œ€๊ทœ๋ชจ ์ง‘์  ํšŒ๋กœ์˜ ๊ตฌ๋ฆฌ ๋ฐฐ์„ ์„ ๋น„๋กฏํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ ์šฉ์•ก์˜ ํŠน์„ฑ์— ๊ด€ํ•œ ์ดํ•ด์™€ ์ธก์ •์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ๋‹ค์–‘ํ•œ ์ธ์‹œ์ธ„ ๋˜๋Š” ์ต์Šค์‹œ์ธ„ ๋ถ„์„ ๋ฐฉ๋ฒ•์ด ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ‹ด-ํŒ”๋ผ๋“ ์ฝœ๋กœ์ด๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์šฉ์•ก์˜ ์•ˆ์ •์„ฑ๊ณผ ๋ฐ˜์‘์„ฑ์„ ์ธก์ •ํ•˜๋Š” ์ธ์‹œ์ธ„ ํˆฌ๊ณผ์œจ ์ธก์ •๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ๊ฐ€์šฉ์„ฑ์— ๋Œ€ํ•˜์—ฌ ๊ณ ์ฐฐํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ฐ„๋‹จํ•˜๋ฉด์„œ๋„ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ํŠน์„ฑ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ตฌ๋ฆฌ ์ž…์ž์™€ ๋ฐ•๋ง‰์˜ ๋ฌผ์„ฑ ๊ด€๊ณ„๋ฅผ ๊ด€์ฐฐํ•˜๊ฑฐ๋‚˜ ๊ด€ํ†ต ์‹ค๋ฆฌ์ฝ˜ ๋น„์•„์—์„œ ์”จ์•—์ธต ํ˜•์„ฑํ•˜๋Š”๋ฐ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์šฉ์•ก์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ์— ๋ณธ ์ธก์ •๋ฐฉ๋ฒ•์„ ์‘์šฉํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ตฌ๋ฆฌ ๋ฌด์ „ํ•ด ๋„๊ธˆ ์šฉ์•ก์˜ ๊ธฐ๋ณธ์ ์ธ ๊ฑฐ๋™์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ‹ด-ํŒ”๋ผ๋“ ์ฝœ๋กœ์ด๋“œ ์šฉ์•ก์„ ์ฃผ์ž…ํ•˜์—ฌ ํˆฌ๊ณผ์œจ ๋ณ€ํ™” ๋ฐ ๊ตฌ๋ฆฌ ์ž…์ž์˜ ํฌ๊ธฐ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ํˆฌ๊ณผ์œจ๊ณผ ๊ตฌ๋ฆฌ ์ž…์ž ์„ฑ์žฅ์˜ ๊ด€๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์•ˆ์ •์„ฑ๊ณผ ๋ฐ˜์‘์„ฑ ๋“ฑ์˜ ์šฉ์•ก ์„ฑ๋Šฅ์„ ๊ฒฐ์ •ํ•˜๋Š” ์ค‘์š”ํ•œ ์š”์†Œ์ธ ์ฐฉํ™”์ œ, ์‚ฐํ™”์ œ, ์ฒจ๊ฐ€์ œ์˜ ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ฐฉํ™”์ œ์˜ ํŠน์„ฑ ํ‰๊ฐ€์—์„œ๋Š” ์ธ์‹œ์ธ„ ํˆฌ๊ณผ์œจ ์ธก์ •์ด ๊ฐ ์šฉ์•ก์˜ ์•ˆ์ •์„ฑ๊ณผ ๋ฐ˜์‘์„ฑ์„ ์ž˜ ๋‚˜ํƒ€๋‚ด ์ค€๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ‹ด-ํŒ”๋ผ๋“ ์ด‰๋งค๋ฅผ ์‚ฌ์šฉํ–ˆ๊ธฐ ๋–„๋ฌธ์— ์‹ค์ œ ๋ฐ˜์‘ ํ™˜๊ฒฝ์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํƒ„ํƒˆ๋ฅจ ๊ธฐํŒ์—์„œ ์ „์ฐฉํ•œ ๋ฐ•๋ง‰์—์„œ์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•จ์œผ๋กœใ…† ๋ณธ ์ธก์ • ๋ฐฉ๋ฒ•์˜ ์‹ค์šฉ์„ฑ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฐํ™”์ œ๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์•Œ๋ฐํ•˜์ด๋“œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์‚ฐํ™”์ œ์˜ ๊ฒฝ์šฐ ๋น„์Šทํ•œ ํˆฌ๊ณผ์œจ ๊ณก์„ ๊ณผ ๊ตฌ๋ฆฌ ์ž…์ž์˜ ํŠน์„ฑ์„ ๋ณด์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ฐ˜์‘์„ฑ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด์—, ๋‚˜๋จธ์ง€ ์‚ฐํ™”์ œ๋Š” ํŠน์„ฑ ํ‰๊ฐ€์— ์ œํ•œ์ ์ด์—ˆ๋Š”๋ฐ, ์ด๋Š” ์žฅ๋น„ ๊ฐœ์„ ์„ ํ†ตํ•ด ํ•ด๊ฒฐ ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ๋” ๋‹ค์–‘ํ•œ ์šฉ์•ก์— ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•˜์˜€๋‹ค. ๊ตฌ๋ฆฌ ์ˆ˜ํผํ•„๋ง์— ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์œ ๊ธฐ ์ฒจ๊ฐ€์ œ๋“ค์ด ๋ฐ˜์‘์„ฑ์— ์ฃผ๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํˆฌ๊ณผ์œจ ๊ณก์„ ์˜ ๋ณ€ํ™”๋Š” ๊ฐ€์† ๋ฐ ๊ฐ์† ํšจ๊ณผ๋ฅผ ๋ชจ๋‘ ๋ณด์—ฌ์ฃผ์—ˆ๊ณ , ์ž‘์šฉํ•˜๋Š” ๋†๋„ ๋ฒ”์œ„ ๋˜ํ•œ ์‹ค์ œ ๊ตฌ๋ฆฌ ๋ฐ•๋ง‰ ์ „์ฐฉ์—์„œ์™€ ์ผ์น˜ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ตฌ๋ฆฌ ์ž…์ž์˜ ๊ด€์ฐฐ์„ ํ†ตํ•ด์„œ๋„ ์šฉ์•ก์˜ ๋ฐ˜์‘์„ฑ ๋ฐ ๊ตฌ๋ฆฌ ๋ฐ•๋ง‰์˜ ํ‘œ๋ฉด ๊ฑฐ์น ๊ธฐ๋ฅผ ์–ด๋Š ์ •๋„ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์ธก์ •๋ฒ•์˜ ํ•œ ์‘์šฉ์œผ๋กœ์จ, ์ธ์‹œ์ธ„ ์ธก์ •์œผ๋กœ๋ถ€ํ„ฐ ์–ป์€ ๊ตฌ๋ฆฌ ์ž…์ž๋“ค๊ณผ ๊ตฌ๋ฆฌ ๋ฐ•๋ง‰์˜ ๋ฌผ์„ฑ์„ ์ธก์ •ํ•˜๊ณ  ๋น„๊ตํ•˜์˜€๋‹ค. ์™„๋ฒฝํ•˜๊ฒŒ ์ •๋Ÿ‰์ ์ธ ๋น„๊ต๋Š” ์–ด๋ ค์› ์ง€๋งŒ ๊ทธ๋ ˆ์ธ ํฌ๊ธฐ์™€ ํ‘œ๋ฉด ๊ฑฐ์น ๊ธฐ ์ธก๋ฉด์—์„œ ์ƒ๋‹นํ•œ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค๋ฅธ ์‘์šฉ์„ ์œ„ํ•ด, ๋ณธ ํˆฌ๊ณผ์œจ ์ธก์ •๋ฒ•์„ ํ†ตํ•ด ์šฐ์ˆ˜ํ•œ ์•ˆ์ •์„ฑ๊ณผ ๋ฐ˜์‘์„ฑ์„ ํ™•์ธ ํ•œ ์šฉ์•ก ๋“ค ์ค‘์— EDTA-HCHO๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์šฉ์•ก์„ ์„ ํƒํ•˜์˜€๋‹ค. ์ด ์šฉ์•ก์„ ์ด์šฉํ•˜์—ฌ ๋†’์€ ์ข…ํšก๋น„๋ฅผ ๊ฐ–๋Š” ๋น„์•„์—์„œ ๊ตฌ๋ฆฌ ์”จ์•—์ธต์„ ํ˜•์„ฑํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์•ˆ์ •์„ฑ์„ ์ข€ ๋” ํ–ฅ์ƒ ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ RE-610๊ณผ 2,2-๋‹ค์ดํ”ผ๋ฆฌ๋”œ์„ ์ฒจ๊ฐ€ํ•ด์„œ ๋ฐ•๋ง‰์„ ์ „์ฐฉํ•˜์˜€๋‹ค. ๊ตฌ์กฐ์ ์ธ ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋น„-๋ณด์‰ฌ ๋น„์•„๋Š” ์ตœ์ ํ™”๋œ ๊ณต์ •์„ ์š”๊ตฌํ•˜์˜€๋‹ค. ๊ทธ์˜ ์ผํ™˜์œผ๋กœ ๊ฐ•์ œ ๋Œ€๋ฅ˜ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜๊ณ  ์ „์ฒ˜๋ฆฌ ์‹œ๊ฐ„์„ ์ตœ์ ํ™” ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋“ฑ๊ฐ์ „์ฐฉ๋œ ๊ตฌ๋ฆฌ ์”จ์•—์ธต์„ ์–ป์—ˆ๊ณ , ์ „ํ•ด๋„๊ธˆ์„ ํ†ตํ•ด ๊ฒฐํ•จ ์—†๋Š” ์ฑ„์›€์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ์ธ์‹œ์ธ„ ํˆฌ๊ณผ์œจ ์ธก์ •๋ฒ•์€ ๋‹ค์–‘ํ•œ ์šฉ์•ก์˜ ์„ฑ๋Šฅ ์ธก์ •๋ฟ ๋งŒ ์•„๋‹ˆ๋ผ ๋ฌผ์„ฑ ์˜ˆ์ธก์—๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ตฌ๋ฆฌ ๋ฐฐ์„ ์—์„œ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•˜์˜€๋‹ค.Cu electroless deposition (ELD) has extensive applications with representative practical use in ultra large scale integration (USLI) interconnection. It is important to figure out the characteristic of solutions related to the reliability. Thus, many analytical methods of solution estimation have been reported in ex-situ and in-situ. In this study, in-situ transmittance measurement to verify the solution performances of the stability and the reactivity on SnPd colloidal surface was proposed as an alternative tool for chemical-sensitive electrochemical analysis, and its feasibility was contemplated. Its advantages lie in both the simplicity of the analysis and the in-situ allowance in time-dependent characterization. Applicatively, the relation of material properties with Cu particles and Cu film was demonstrated and qualified solution was applied to form Cu seed layer in through silicon via (TSV). To understand the basic behaviors of Cu ELD solution, the change of transmittance with the size of Cu particles by the injection of SnPd colloids were observed. Based on the relationship between the transmittance and the Cu particle growth, in-situ monitoring was applied to determine the effect of complexing agents, reducing agents, and the organic additives, which are the important elements in determination of solution performance, on stability and reactivity. In application of in-situ measurements to performance test with various complexing agents, it was confirmed that the stability and reactivity of each solution were well described by in-situ transmittance measurement. The merits of methods which reflect the real environmental impact by supporting SnPd catalyst helped to exhibit the characteristics of solutions. The validity of the in-situ transmittance monitoring was supported by comparison with the consequence from the actual film deposition on Ta substrate. In the same way, reducing agents were evaluated. Aldehyde based reducing agents showed the similar trends in transmittance and Cu powder so that the reactivity could also be predicted. In contrast, other reducing agents exhibited different trends and some limitations. It is expected that those problems would be solved with suggested modification of equipment. These results implied the validity of widening in application to various kinds of solutions. Measurement with organic additives, usually used for bottom-up filling was also implied for reactivity test. The change of reaction time from transmittance curve represented the acceleration and suppression effect, and the concentration range affected was same as that in Cu film deposition. Cu powder also allowed us to forecast the reactivity of solution and surface roughness of Cu film. Additionally, material properties of Cu powder with organic additives were measured to find out whether it can indicate those of Cu film. As a result, though precise prediction was difficult, they have considerable relationship in the aspect of the grain size and the surface roughness. For another application, one of the optimal compositions in the aspect of the stability and the reactivity, EDTA-HCHO based-solution, was selected by in-situ transmittance measurement. With this solution, the formation of Cu seed layer in high aspect ratio of via was performed. The additional improvement of the stability with RE-610ยฎ and 2,2-dipyridyl facilitated the achievement of adhesive Cu film. To overcome the structural drawbacks of non-Bosch TSV, more optimization and the modification of process were required. In a bid for it, pretreatment conditions were optimized and convection system was adopted. Optimal time was achieved by populating the Cu nuclei at the bottom of the vias, and the continuity and conformality of the seed layer were enhanced by finding the optimal rotating speed. Finally, conformal Cu seed layer was obtained, on which Cu was successfully filled by electrodeposition (ED) without voids. In conclusion, proposed in-situ transmittance measurement was proved to be applicable for not only the evaluation of performances with various kinds of solutions but also the prediction of material characters. It was confirmed that this monitoring method has potentials to be applied in various field including Cu interconnection.Contents Abstract...................................................................................................................................... i List of Tables.............................................................................................................................. vi List of Figures............................................................................................................................. vii Chapter I. Introduction............................................................................................................. 1 1-1. Electroless deposition (ELD) .................................................................................... 1 1-2. Cu ELD...................................................................................................................... 9 1-3. Material properties of Cu film................................................................................... 16 1-4. Application of Cu ELD in ULSI................................................................................ 19 1-5. Organic additives....................................................................................................... 25 1-6. Evaluation of Cu ELD solution................................................................................. 30 Chapter II. Experimental.......................................................................................................... 34 2-1. in-situ transmittance measurement............................................................................ 34 2-2. Film deposition.......................................................................................................... 41 2-3. Seed layer formation in through silicon vias (TSVs)................................................ 43 Chapter III. in-situ transmittance measurement in Cu ELD 3.1. Equipment of in-situ transmittance measurement..................................................... 47 3.2. Basic understanding of transmittance curve.............................................................. 50 3.3. Effects of complexing agent...................................................................................... 57 3.4. Effects of reducing agents.......................................................................................... 63 Chapter IV. Organic additives in Cu ELD 72 4.1. Effects of organic additives....................................................................................... 72 4.2. Characterization of material properties with organic additives................................ 94 Chapter V. Seed layer formation in through silicon via (TSV).............................................. 105 Chapter VI. Conclusions........................................................................................................... 116 References................................................................................................................................... 119 ๊ตญ๋ฌธ์ดˆ๋ก...................................................................................................................................... 125 Appendix I - White Pigment in Electronic Paper................................................................... 128 Appendix II - CURRICULUM VITAE.................................................................................... 161Docto

    ๊ณ„์Šน์  ๊ด€์ ์—์„œ์˜ ํ–ฅ๊ฐ€ : ๊ณ ๋ ค๊ฐ€์š” ํ˜•์‹ ๊ณ ์ฐฐ

    No full text
    corecore