28 research outputs found

    Relocation법과 λ³€μ ˆμ  μš”μ†Œλ₯Ό μ΄μš©ν•œ μœ ν•œ μš”μ†Œ μžλ™ μž¬λΆ„ν• κ³Ό 사후 였차 평가에 κ΄€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :쑰선해양곡학과,1996.Maste

    λ§‰λŒ€μ€ν•˜ ν•΅κ³ λ¦¬μ˜ 별 ν˜•μ„±

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ λ¬Όλ¦¬Β·μ²œλ¬Έν•™λΆ€(μ²œλ¬Έν•™μ „κ³΅), 2022. 8. κΉ€μ›…νƒœ.ν•΅κ³ λ¦¬λŠ” λ§‰λŒ€μ€ν•˜ μ€‘μ‹¬μ—μ„œ ν”νžˆ λ°œκ²¬λ˜λŠ” 고리 ν˜•νƒœμ˜ ꡬ쑰물이닀. ν•΅κ³ λ¦¬λŠ” λŒ€μ²΄λ‘œ 별탄생이 ν™œλ°œνžˆ μΌμ–΄λ‚˜λŠ” 지역이며, μž‘μ€ 크기 (∼ 1 kpc) 에도 λΆˆκ΅¬ν•˜κ³  μ€ν•˜ 전체에 λ§žλ¨ΉλŠ” λ³„ν˜•μ„±λ₯ μ„ 보여주기도 ν•œλ‹€. μ€ν•˜ μ€‘μ‹¬μ—μ„œ μ§‘μ€‘μ μœΌλ‘œ μΌμ–΄λ‚˜λŠ” 이 λŸ¬ν•œ λ³„ν˜•μ„±μ€ μœ μ‚¬νŒ½λŒ€λΆ€λ₯Ό λΉ„λ‘―ν•œ 쀑심뢀 고밀도 ν•­μ„± κ΅¬μ‘°λ¬Όλ“€μ˜ 기원과 관련이 μžˆλ‹€κ³  여겨진닀. λ˜ν•œ ν•΅κ³ λ¦¬μ˜ ν™œλ°œν•œ λ³„νƒ„μƒμœΌλ‘œλΆ€ν„° λΉ„λ‘―λœ 볡사, 항성풍, μ΄ˆμ‹ μ„± 폭발 λ“±κ³Ό 같은 λ˜λ¨Ήμž„ μž‘μš©μ€ μ€ν•˜ν’μ˜ ν˜•μ„±μ΄λ‚˜ μ€ν•˜ν•΅μ˜ ν™œλ™μ„±μ—λ„ 영ν–₯을 λ―ΈμΉ  κ²ƒμœΌλ‘œ μƒκ°λœλ‹€. κ΄€μΈ‘μ μœΌλ‘œ ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ€ λ‹€μ–‘ν•œ μ‹œκ°„μ²™λ„μ™€ 진폭을 가지 κ³  λ³€ν™”ν•΄ 온 κ²ƒμœΌλ‘œ λ³΄μ΄λŠ”λ°, 무엇이 ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ„ κ²°μ •ν•˜λ©° κ·Έκ²ƒμ˜ μ‹œκ°„μ  λ³€ν™”λ₯Ό μ•ΌκΈ°ν•˜λŠ”μ§€μ— λŒ€ν•œ 이둠적 μ΄ν•΄λŠ” λ―Έμ§„ν•˜λ‹€. 이에 λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” 3차원 μžκΈ°μœ μ²΄μ—­ν•™μ  수치λͺ¨μ˜μ‹€ν—˜μ„ ν†΅ν•˜μ—¬ ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ— μ€‘μš”ν•œ 영ν–₯을 쀄 κ²ƒμœΌ 둜 μƒκ°λ˜λŠ” μ§ˆλŸ‰ μœ μž…λ₯ κ³Ό μ΄ˆμ‹ μ„± λ˜λ¨Ήμž„ 및 자기μž₯의 효과λ₯Ό λ‹¨κ³„μ μœΌλ‘œ μ‚΄νŽ΄λ³΄κ³  이λ₯Ό 톡해 ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ„ μ‘°μ ˆν•˜λŠ” 물리적 κΈ°μž‘μ„ 밝히고자 ν•˜μ˜€λ‹€. 제 2μž₯μ—μ„œλŠ” λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œ μ‚¬μš©ν•œ μ€€κ΄‘μ—­ λͺ¨ν˜•μ„ μ†Œκ°œν•˜κ³  이λ₯Ό μ΄μš©ν•˜μ—¬ 질 λŸ‰ μœ μž…λ₯ μ„ μΌμ •ν•˜κ²Œ ν†΅μ œν–ˆμ„ κ²½μš°μ— ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±μ΄ μ–΄λ–€ μ–‘μƒμœΌλ‘œ μΌμ–΄λ‚˜λŠ”μ§€ μ•Œμ•„λ³΄μ•˜λ‹€. λ‹€μ–‘ν•œ 크기와 μ§ˆλŸ‰ μœ μž…λ₯ μ„ κ°–λŠ” λͺ¨ν˜•λ“€μ— λŒ€ν•˜μ—¬ 3차원 μœ μ²΄μ—­ν•™μ  수치λͺ¨μ˜μ‹€ν—˜μ„ μˆ˜ν–‰ν•œ κ²°κ³Ό ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ€ 고리의 ν¬κΈ°μ™€λŠ” λ¬΄κ΄€ν•˜λ©° μ§ˆλŸ‰ μœ μž…λ₯ κ³Ό κ°•ν•œ 상관관계λ₯Ό λ³΄μΈλ‹€λŠ” 것을 λ°œκ²¬ν•˜μ˜€λ‹€. ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ€ μ•½ 2λ°° λ‚΄μ™Έμ˜ λ¬΄μž‘μœ„μ  μš”λ™μ„ μ œμ™Έν•˜λ©΄ λͺ¨λ“  경우 μ‹œκ°„μ— 따라 μΌμ •ν•˜κ²Œ μœ μ§€λ˜μ—ˆλŠ”λ° μ΄λŠ” κ΄€μΈ‘λ˜λŠ” 핡고리 λ³„ν˜•μ„±λ₯ μ˜ μ‹œκ°„μ— λ”°λ₯Έ λ³€ν™”λ₯Ό μ΄ˆμ‹ μ„± λ˜λ¨Ήμž„μ˜ 효과만으둜 μ„€λͺ…ν•  수 μ—†μŒμ„ μ‹œμ‚¬ν•œλ‹€. ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ΄ μ§ˆλŸ‰ μœ μž…λ₯ μ— μ˜ν•΄ κ²°μ •λ˜λŠ” 반면, ν•΅κ³  리의 기체 μ§ˆλŸ‰μ€ λ˜λ¨Ήμž„μ— μ˜ν•œ 쀑심면 μ••λ ₯이 쀑심면 μœ„μͺ½μ— 놓인 기체의 λ¬΄κ²Œμ™€ 정역학적 ν‰ν˜•μ„ μ΄λ£¨λŠ” κ³Όμ •μ—μ„œ κ²°μ •λ˜μ—ˆλ‹€. 제 3μž₯μ—μ„œλŠ” μ§ˆλŸ‰ μœ μž…λ₯ μ΄ μ‹œκ°„μ— 따라 λ³€ν™”ν•˜κ±°λ‚˜ λΉ„λŒ€μΉ­μ μΌ 경우 ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±μ΄ μ–΄λ– ν•œ μ–‘μƒμœΌλ‘œ 일어날 것인지 μ•Œμ•„λ³΄μ•˜λ‹€. μ§ˆλŸ‰ μœ μž…λ₯ μ˜ λ³€ν™” μ£ΌκΈ°κ°€ λ„ˆ 무 짧은 (< 50 Myr) 경우λ₯Ό μ œμ™Έν•˜λ©΄ ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ€ μ•½κ°„μ˜ μ‹œμ°¨λ₯Ό 두고 μ§ˆλŸ‰ μœ μž…λ₯ μ„ 따라 λ³€ν™”ν•˜μ˜€λ‹€. λ³„ν˜•μ„±λ₯ μ˜ 변화에 따라 쀑심면 μ••λ ₯κ³Ό 기체 무게 μ—­μ‹œ μ‹œ 간에 따라 λ³€ν™”ν•˜μ˜€μ§€λ§Œ μ§ˆλŸ‰ μœ μž…λ₯ μ΄ μΌμ •ν•œ κ²½μš°μ™€ λ§ˆμ°¬κ°€μ§€λ‘œ 수직 λ°©ν–₯ 정역학적 ν‰ν˜•μ€ 항상 잘 μœ μ§€λ˜μ—ˆλ‹€. λ³„ν˜•μ„±λ₯ κ³Ό 기체 μ§ˆλŸ‰μ˜ κ΄€κ³„λŠ” PRFM이둠이 μ˜ˆμΈ‘ν•˜λŠ” 바와 잘 λΆ€ν•©ν•˜μ˜€λ‹€. λΉ„λŒ€μΉ­μ μΈ μ§ˆλŸ‰ μœ μž…μ΄ 항상 λΉ„λŒ€μΉ­μ μΈ λ³„ν˜•μ„±μ„ μΌμœΌν‚€μ§€λŠ” μ•ŠμœΌλ‚˜, 두 먼지띠 (dust lane) 쀑 ν•œ μͺ½μ˜ μ§ˆλŸ‰ μœ μž…λ₯ μ΄ κ°‘μžκΈ° μ¦κ°€ν•˜λŠ” κ²½μš°μ—λŠ” μΌμ‹œμ μœΌλ‘œ λΉ„λŒ€μΉ­μ  λ³„ν˜•μ„±μ΄ 일어날 수 μžˆμŒμ„ λ³΄μ˜€λ‹€. 제 4μž₯μ—μ„œλŠ” 자기μž₯이 ν•΅κ³ λ¦¬μ˜ 역학적 진화와 λ³„ν˜•μ„±μ— λ―ΈμΉ˜λŠ” 역할을 μ•Œμ•„λ³΄κΈ° μœ„ν•˜μ—¬ μ•žμ„œ μ‚¬μš©ν•œ μ€€κ΄‘μ—­ λͺ¨ν˜•μ„ λ°œμ „μ‹œμΌœ 자기μž₯을 ν¬ν•¨ν•œ μ§ˆλŸ‰ μœ μž…μ„ λ‹€λ£° 수 있게 ν•˜μ˜€λ‹€. λ‹€μ–‘ν•œ 초기 자기μž₯을 κ°–λŠ” λͺ¨ν˜•μ— λŒ€ν•΄ 3차원 μžκΈ°μœ μ²΄μ—­ν•™μ  수치λͺ¨μ˜ μ‹€ν—˜μ„ μˆ˜ν–‰ν•œ κ²°κ³Ό 자기μž₯이 핡고리 μ˜μ—­μ—μ„œ λΉ λ₯΄κ²Œ 증폭됨을 λ°œκ²¬ν•˜μ˜€λŠ”λ°, μ΄λŠ” μ΄ˆμ‹ μ„± λ˜λ¨Ήμž„κ³Ό μ°¨λ“±νšŒμ „μ΄ ν•¨κ»˜ μž‘μš©ν•œ 결과라고 μƒκ°λœλ‹€. 연이은 μ΄ˆμ‹ μ„± ν­λ°œμ— μ˜ν•΄ λ§Œλ“€μ–΄μ§„ μ΄ˆκ±°ν’ˆ(superbubble)은 쀑심면 기체측을 뚫고 높은 κ³ λ„λ‘œ νŒ½μ°½ν•˜λŠ” κ³Όμ •μ—μ„œ 고리 μ˜μ—­μ˜ μ›ν™˜(toroidal) 자기μž₯을 끌고 λ‚˜κ°€ 자였면(poloidal) 자기μž₯을 μƒμ„±ν•˜μ˜€λ‹€. μžκΈ°μ••λ ₯은 열적 μ••λ ₯κ³Ό λ‚œλ₯˜μ— μ˜ν•œ μš΄λ™ν•™μ  μ••λ ₯을 λŠ₯κ°€ν•˜μ—¬ 쒅ꡭ에 λŠ” ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ„ λ–¨μ–΄νŠΈλ Έλ‹€. 자기μž₯λ ₯(magnetic tension)에 μ˜ν•œ λŒλ¦Όνž˜μ€ 기체의 κ°μš΄λ™λŸ‰μ„ λΉΌμ•—μ•„ ν•΅κ³ λ¦¬λ‘œλΆ€ν„° 쀑심방ν–₯으둜의 κ°•μ°© 흐름을 μ•ΌκΈ°ν•˜μ—¬ ν•΅μ£Ό λ³€μ›λ°˜(circumnuclear disk)을 ν˜•μ„±ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 결과듀을 μ’…ν•©ν•΄ λ³Ό λ•Œ ν•΅κ³ λ¦¬μ˜ λ³„ν˜•μ„±λ₯ μ΄ κΈ΄ μ‹œκ°„ 간격 λ™μ•ˆ λ³€ν™”ν•˜ λŠ” 것은 주둜 μ§ˆλŸ‰ μœ μž…λ₯ μ˜ 변화에 κΈ°μΈν•˜λŠ” 것이며, μ΄ˆμ‹ μ„± λ˜λ¨Ήμž„μ€ 비ꡐ적 μž‘μ€ 진폭과 μ‹œκ°„μ²™λ„λ₯Ό κ°–λŠ” λ¬΄μž‘μœ„μ  μš”λ™μ„ μΌμœΌν‚€λŠ” ν•œνŽΈ 수직 λ°©ν–₯ 정역학적 ν‰ν˜•μ„ μœ μ§€ν•¨μœΌλ‘œμ„œ κ³ κ°ˆμ‹œκ°„μ„ κ²°μ •ν•˜λŠ” 역할을 ν•œλ‹€κ³  결둠지을 수 μžˆμ—ˆλ‹€. 단, 자기μž₯이 μ•„μ£Ό κ°•ν•œ ν•΅κ³ λ¦¬μ˜ 경우 λ³„ν˜•μ„±λ₯ μ΄ μ§ˆλŸ‰ μœ μž…λ₯ λ³΄λ‹€ 맀우 μž‘μ•„μ§ˆ 수 μžˆμ–΄μ„œ λ³„ν˜•μ„± λ₯ κ³Ό μ§ˆλŸ‰ μœ μž…λ₯ μ˜ 관계λ₯Ό λ‹€μ†Œ λ³΅μž‘ν•˜κ²Œ λ§Œλ“€ 수 μžˆμœΌλ―€λ‘œ μΆ”ν›„ 이에 λŒ€ν•œ 더 λ§Žμ€ 연ꡬ가 이루어져야 ν•  것이닀.Nuclear rings are sites of compact yet intense star formation often found at centers of barred galaxies. Concentrated in a small volume, rapid formation of stars in nuclear rings has an important consequence on the buildup of dense stellar structures at galaxy centers. In addition, strong stellar feedback from nuclear rings greatly changes gas flow structure, affecting the launching of galactic winds and the fueling of nuclear activities. While observations indicate that the star formation rate of nuclear rings varies considerably with space and time, theoretical understanding of what controls star formation in nuclear rings remains elusive. In this thesis, we use three-dimensional (magneto)hydrodynamic simulations to investigate effects of mass inflow, supernova feedback, and magnetic fields on star formation in nuclear rings. In Chapter 2, we use controlled numerical simulations to study what determines the structure and star formation rate of nuclear rings subject to constant mass inflow rates. A common numerical framework that is used throughout the thesis is introduced in this chapter. We find that, contrary to previous expectations based on one-dimensional models, the supernova feedback is not strong enough to destroy the ring or quench star formation everywhere in the ring because of their stochasticity in space and time. Under the constant mass inflow rate, the ring star formation is very steady and persistent, where the star formation rate is tightly correlated with the inflow rate and exhibits only mild temporal fluctuations. The ring gas mass at the given star formation rate is set by the force balance between the midplane pressure arising from stellar feedback and the weight of the gas under the gravitational field arising from both gas and stars. In Chapter 3, we allow the mass inflow rate to vary in time and/or be asymmetric in space, to assess resulting effects on temporal and spatial distribution of star formation in nuclear rings. We find that a time-varying inflow rate with not too small an amplitude and timescale can cause episodic star formation in nuclear rings, such that the star formation rate follows the variation of the inflow rate with some time delay. Within the ring, vertical dynamical equilibrium is well maintained such that the midplane pressure balances the weight of the overlying gas, despite large time variations in the latter two quantities. The relation between the star formation rate and gas mass is consistent with the prediction from the pressure-regulated, feedback-modulated star formation theory. While asymmetry in the inflow rate does not necessarily lead to asymmetric star formation, a transient period of lopsided star formation occurs when the inflow rate from one of the two dust lanes is suddenly increased by a large factor. In Chapter 4, we include magnetic fields in our models to study their effects on dynamical evolution of nuclear rings and star formation therein. We find that magnetic fields are efficiently amplified in the ring due presumably to rotational shear and supernova feedback. Expanding superbubbles created by clusterd supernova explosions drag predominantly-toroidal fields near the midplane to produce poloidal fields away in high-altitude regions. Magnetic pressure in the ring eventually dominates the thermal and turbulent pressures and suppresses the ring star formation. Strong magnetic tension in the ring drives accretion flows from the ring radially inward and forms a circumnuclear disk in the central region, which is absent in the unmagnetized model. Taken together, we conclude that the ring star formation rate and its long-term time variations are causally controlled by the mass inflow rate, while the supernova feedback is responsible for maintaining the vertical dynamical equilibrium and by doing so setting the depletion time, and induces small-amplitude, short-term fluctuations in the star formation rate. When magnetic fields are very strong, however, the ring star formation rate can be significantly suppressed below the mass inflow rate, complicating the relation between the inflow rate and star formation rate.1 Introduction 1 1.1 Observational Evidence of Bar-Driven Galaxy Evolution 2 1.1.1 Central Star Formation Enhancements 3 1.1.2 Disk-Like Bulges 5 1.2 Gas Flow in Barred Galaxies 6 1.2.1 Closed Orbits 6 1.2.2 Gaseous Response 13 1.3 Nuclear Rings 16 1.3.1 Formation Mechanisms 16 1.3.2 Physical Properties 20 1.3.3 Star Formation History 23 1.4 Scope and Outline of This Thesis 24 2 Semi-Global Numerical Simulations of Nuclear Rings Subject to Constant Mass Inflow Rates 27 2.1 Overview 27 2.2 Numerical Methods 31 2.2.1 Basic Equations 31 2.2.2 Gas Inflow Streams 37 2.2.3 Star Particles and SN Feedback 40 2.2.4 Models 41 2.3 Evolution 44 2.3.1 Overall Evolution of the Fiducial Model 44 2.3.2 Star Formation 52 2.3.3 Other Models 55 2.4 Correlations of Statistical Quantities 60 2.4.1 Ring Properties 62 2.4.2 Vertical Dynamical Equilibrium and Star Formation Feedback 65 2.5 Summary and Discussion 77 2.5.1 Summary 77 2.5.2 Discussion 81 3 Effects of Varying Mass Inflows on Star Formation in Nuclear Rings 87 3.1 Overview 87 3.2 Methods 90 3.2.1 Equations 90 3.2.2 Models 93 3.3 Results 95 3.3.1 Time Variation of the SFR 97 3.3.2 Relation between the SFR and the Inflow Rate 98 3.3.3 Self-regulation Theory 103 3.3.4 Spatial Distributions of Star Clusters 107 3.4 Summary and Discussion 111 4 Effects of Magnetic Fields on Gas Dynamics and Star Formation in Nuclear Rings 117 4.1 Overview 117 4.2 Numerical Methods 121 4.2.1 Governing Equations 122 4.2.2 Star Formation and Feedback 125 4.2.3 Magnetized Inflow Streams 125 4.2.4 Models 130 4.3 Evolution 130 4.3.1 Overall Evolution 131 4.3.2 Star Formation History 136 4.3.3 Magnetically Driven Accretion Flow 137 4.4 Magnetic Fields in the Ring 141 4.4.1 Growth of Magnetic Fields 141 4.4.2 Effects of Magnetic Fields on Star Formation 145 4.4.3 Vertical Dynamical Equilibrium 149 4.5 Summary and Discussion 150 4.5.1 Summary 150 4.5.2 Discussion 152 5 Conclusions and Future Work 157 5.1 Conclusions 157 5.2 Future Work 160 Bibliography 163 Appendix 178 A Orbit Integration of Sink Particles with the Coriolis Force 179 B Seed Magnetic Fields 185 C Magnetic Energy Conservation 187 D Mass Accretion Rates due to Maxwell and Reynolds Stresses 189 μš”μ•½ 191λ°•
    corecore