58 research outputs found

    ฮฑ-Al2O3 ๋‚˜๋…ธ๊ตฌ์กฐ๋ฌผ์„ ์ด์šฉํ•œ GaN ์ธต ์ด์ข…์„ฑ์žฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2016. 8. ์œค์˜์ค€.GaN ์„ฑ์žฅ์€ ๊ฒฝ์ œ์ , ๊ธฐ์ˆ ์ ์ธ ์ด์œ ๋กœ ๋™์ข… ๊ธฐํŒ์„ ์‚ฌ์šฉํ•œ ์—ํ”ผ์„ฑ์žฅ์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ฃผ๋กœ ์ด์ข…๊ธฐํŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ฑ์žฅ์ด ์ง„ํ–‰๋œ๋‹ค. ์ด์ข… ๊ธฐํŒ์œผ๋กœ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๊ธฐํŒ์€ ์‚ฌํŒŒ์ด์–ด ๊ธฐํŒ์ด์ง€๋งŒ ๊ฒฉ์ž์ƒ์ˆ˜ ์ฐจ์ด์™€ ์—ดํŒฝ์ฐฝ๊ณ„์ˆ˜ ์ฐจ์ด๋กœ ์ธํ•ด์—ฌ ๋งŽ์€ ๋ฌธ์ œ์ ๋“ค์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ ์€ ๊ฒฉ์ž์ƒ์ˆ˜ ์ฐจ์ด๋กœ ์ธํ•˜์—ฌ ์†Œ์ž์— ํšจ์œจ๊ณผ ์‹ ๋ขฐ์„ฑ์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ˆ˜๋งŽ์€ ๊ฒฐ์ • ๊ฒฐํ•จ์ด GaN ๋‚ด๋ถ€์— ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜๊ณ  ๋˜ํ•œ ์—ดํŒฝ์ฐฝ๊ณ„์ˆ˜ ์ฐจ์ด๋กœ ์ธํ•ด ์„ฑ์žฅ ํ›„ ๋ƒ‰๊ฐ ๊ณผ์ •์—์„œ GaN ์ธต์— ์••์ถ•์‘๋ ฅ์ด ์ž‘์šฉํ•˜๊ฒŒ ๋˜๋ฉฐ ์ด์— wafer์˜ ํœจ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. Wafer์˜ ํœจ ํ˜„์ƒ์€ ์‚ฌํŒŒ์ด์–ด ๊ธฐํŒ์˜ ๋Œ€๋ฉด์ ํ™”๋ฅผ ์–ด๋ ต๊ฒŒ ํ•˜๋ฉฐ, ํœจ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋‘๊บผ์šด ๊ธฐํŒ์„ ์‚ฌ์šฉํ•˜๊ฒŒ ๋˜๋ฉด ์›๊ฐ€๋น„์šฉ ์ƒ์Šน์˜ ๋ฌธ์ œ์ ์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” cavity engineered sapphire substrate (CES)๋ฅผ ์ œ์ž‘ํ•˜์˜€๊ณ  ๊ทธ ์œ„์— ์œ ๊ธฐ๊ธˆ์†ํ™”ํ•™์ฆ์ฐฉ์žฅ๋น„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ GaN์„ ์„ฑ์žฅ์‹œํ‚ค๊ณ  ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์ธphotolithography (PR) ๊ธฐ๋ฒ•๊ณผ ์›์ž์ธต์ฆ์ฐฉ์žฅ๋น„์„ ํ™œ์šฉํ•˜์—ฌ CES ๊ตฌ์กฐ๋ฅผ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, ์ด๋•Œ PR์€ ํฌ์ƒ์ธต ์—ญํ• ๊ณผ CES ๊ตฌ์กฐ์˜ ๊ธฐ๋ณธ ํ˜•ํƒœ๋ฅผ ์žก์•„์ฃผ๊ฒŒ ๋œ๋‹ค. ๋น„์ •์งˆ ์•Œ๋ฃจ๋ฏธ๋‚˜๋Š” PR ํŒจํ„ด ์œ„์— ์ฆ์ฐฉํ•˜๋ฉฐ ์ดํ›„ ์ค‘๊ณต๊ตฌ์กฐ๋ฌผ์˜ ๊ป์งˆ์„ ํ˜•์„ฑํ•˜๊ฒŒ ๋˜๊ณ  ์ดํ›„ ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์‚ฌํŒŒ์ด์–ด ๊ธฐํŒ๊ณผ ๊ฐ™์€ ๊ฒฐ์ • ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ์•ŒํŒŒ์ƒ์œผ๋กœ ๊ฒฐ์ •ํ™”๊ฐ€ ์ผ์–ด๋‚˜๊ฒŒ ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ œ์ž‘๋œ CES ์œ„์— GaN ์„ฑ์žฅ์„ ์ง„ํ–‰ํ•˜์˜€๊ณ  ๋ ˆ์ด์ € ์Šค์บ” ๊ธฐ๋ฒ•์œผ๋กœ ๊ธฐํŒ์˜ ํœจ์„ ์ธก์ •ํ•˜์—ฌ GaN ๋‚ด๋ถ€์˜ ์‘๋ ฅ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ CES ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์—ฌ GaN ์„ ์„ฑ์žฅ์‹œ์ผฐ์„ ๋•Œ ๊ธฐ์กด ๋ฐฉ๋ฒ• ๋Œ€๋น„ ์•ฝ 35%์˜ ์‘๋ ฅ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ๊ธฐ์ˆ ์„ ์‘์šฉํ•˜์—ฌ compliant ๊ธฐํŒ์„ ์ œ์ž‘ํ•˜๊ณ  ๊ฒฐํ•จ ๊ฐ์†Œ์˜ ์—ฐ๊ตฌ๋„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. Compliant ๊ธฐํŒ์ด๋ž€ ๋ฐ•๋ง‰๋ณด๋‹ค ์–‡์€ ๊ธฐํŒ์„ ์ด์šฉํ•˜์—ฌ ๋ฐ•๋ง‰์˜ ๊ฒฐ์ • ๊ฒฐํ•จ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์›์ž์ธต์ฆ์ฐฉ์žฅ๋น„์˜ ์ฆ์ฐฉ ํšŸ์ˆ˜๋ฅผ ์กฐ์ ˆํ•˜์—ฌ 26 nm ๋‘๊ป˜์˜ ์‚ฌํŒŒ์ด์–ด ๋ฉค๋ธŒ๋ ˆ์ธ์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ๊ทธ ์œ„์— GaN ๋ฅผ ์„ฑ์žฅํ•˜๊ณ  ๊ฒฐ์ • ๊ฒฐํ•จ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ณ ๋ถ„ํ•ด๋Šฅ ํˆฌ๊ณผ์ „์žํ˜„๋ฏธ๊ฒฝ ๋ถ„์„์„ ํ†ตํ•ด ๊ณ„๋ฉด์—์„œ์˜ misfit dislocation์„ ๊ด€์ฐฐํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ GaN๊ณผ ์‚ฌํŒŒ์ด์–ด ๋ฉค๋ธŒ๋ ˆ์ธ ๊ณ„๋ฉด์—์„œ์˜ misfit dislocation์˜ ๋ฐ€๋„๊ฐ€ ์‚ฌํŒŒ์ด์–ด ๊ธฐํŒ์„ ์‚ฌ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ๋ณด๋‹ค 28 % ๊ฐ์†Œํ•˜์˜€๊ณ , ๋˜ํ•œ GaN ํ‘œ๋ฉด์œผ๋กœ ์˜ฌ๋ผ์˜ค๋Š” threading dislocation์˜ ๋ฐ€๋„ ๋˜ํ•œ 25 % ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋งค์šฐ ์–‡์€ ๋ฉค๋ธŒ๋ ˆ์ธ์„ ๊ธฐํŒ์œผ๋กœ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ GaN ๋‚ด๋ถ€์‘๋ ฅ์ด ๋งค์šฐ ๋‚ฎ์•„์ง„ ๊ฒƒ์„ Raman ๊ณผ PL ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์‚ฌํŒŒ์ด์–ด ๋ฉค๋ธŒ๋ ˆ์ธ์˜ ์ŠคํŠธ๋ผ์ดํ”„ ํŒจํ„ด์„ ์ด์šฉํ•˜์—ฌ c๋ฉด InGaN/GaN MQW์—์„œ์˜ ํŽธ๊ด‘ ๋ฐœ๊ด‘์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋น›์˜ ํŽธ๊ด‘์„ฑ์€ LCD์˜ ๋ฐฑ๋ผ์ดํŠธ๋‚˜ ํ†ต์‹  ๋“ฑ์— ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ŠคํŠธ๋ผ์ดํ”„ ํŒจํ„ด์„ ์ด์šฉํ•จ์œผ๋กœ์จ GaN ํ‰๋ฉด ๋‚ด ์ด๋ฐฉ์„ฑ์˜ ์‘๋ ฅ์ด ๋ฐœ์ƒ๋˜๋ฉฐ, ์ด๋Š” ๊ฐ€์ „์ž๋Œ€์˜ ๋ถ„๋ฆฌ๋ฅผ ์•ผ๊ธฐ์‹œํ‚จ๋‹ค. ์ด๋กœ ์ธํ•ด ๊ทธ ์œ„์— ์„ฑ์žฅ๋œ InGaN/GaN MQW ํ™œ์„ฑ์ธต์—์„œ ํŽธ๊ด‘ ๋ฐœ๊ด‘์ด ๊ด€์ธก๋˜๊ฒŒ ๋˜๋ฉฐ ํŽธ๊ด‘๋ฅ ์€ 0.75 ๋กœ ์ธก์ •๋˜์—ˆ๋‹ค.In this work, we focus on the growth of GaN and related III-nitride alloys using cavity engineered sapphire substrate (CES). Large mismatches in lattice constant and thermal expansion coefficient between GaN layer and sapphire substrate causes severe problems in the fabrication of high efficiency optoelectronic devices such as light emitting diodes (LEDs) or laser diodes (LDs). Wafer bow is one of issues in LED industry which hampers the mass production of LEDs using large-size sapphire wafers. Moreover, it also causes the crack in GaN layer during laser lift-off process for the fabrication of vertical LEDs. Wafer bow occurs after high temperature deposition, since the thermal expansion coefficient of the sapphire substrate is much larger than that of GaN so that biaxial compressive stress is generated in GaN layer. To overcome this problem, we intentionally inserted the cavities within the GaN layer to relax the biaxial stress. Cavity structure was fabricated using a conventional photolithography process and atomic layer deposition (ALD). Photoresist (PR) pattern acts as the basic frame of cavity structure as well as a sacrificial layer. An amorphous Al2O3 layer deposited on PR pattern by ALD acts as the shell of cavity. The amorphous Al2O3 layer was crystallized to ฮฑ-phase Al2O3 which is the same crystal structure with sapphire substrate, allowing epitaxial growth of GaN. Then, GaN layer was successfully grown on CES. The reduction of compressive stress of GaN layer was examined by laser scanning technique and the stress decreases about 35% compared to the GaN layer on conventional sapphire substrate. CES fabrication method can be also applied to realize the compliant substrate. By controlling the number of ALD cycles, thickness of Al2O3 layer can be easily adjusted. We fabricated an ultra-thin (26 nm) Al2O3 membrane used as a compliant substrate for the growth of high quality GaN. The density of misfit dislocations per unit length at the interface between the GaN layer and the sapphire membrane was reduced by 28 % compared to GaN on the conventional sapphire substrate. Threading dislocation density in GaN on the sapphire membrane was measured to be 2.4 x 10^8/cm^2, which is lower than that for GaN on the conventional sapphire substrate (3.2 x 10^8/cm^2). XRD and micro-Raman results verifed that the residual stress in GaN on the sapphire membrane was as low as 0.02 GPa due to stress absorption by the ultra-thin compliant sapphire membrane. Finally, we utilized the stripe pattern of Al2O3 membrane to realize linearly polarized emission from MQWs grown on c-plane GaN template. The in-plane stress anisotropy in GaN layer by using FSM stress measurement tool. This anisotropic stress in GaN layer results in the in-plane polarization anisotropy in photoluminescence emission for MQWs on the stripe sapphire membrane. The result of in-plane polarization anisotropy can be explained in terms of the valence band structure modification. The degree of polarization is determined and is as high as 0.75.Chapter 1. Introduction 1 1.1 History of III-nitride materials 1 1.2 General properties of III-nitride materials 2 1.3 Compliant substrates for Heteroepitaxial Growth 6 1.4 Epitaxial lateral overgrowth (ELO) 12 1.5 Formation of misfit dislocation in compliant substrate 17 1.6 References 24 Chapter 2. Growth and analysis tools 26 2.1 Growth equipments 26 2.1.1 Atomic layer deposition (ALD) 26 2.1.2 Metalorganic chemical vapor deposition (MOCVD) 27 2.2 Analysis tools 30 2.2.1 Field emission scanning electron microscopy (FE-SEM) 30 2.2.2 Atomic forme microscopy (AFM) 30 2.2.3 Transmission electron microscopy (TEM) 30 2.2.4 Photoluminescence (PL) 31 2.2.5 X-ray diffraction (XRD) 31 2.2.6 Cathodoluminescence (CL) 32 2.2.7 Raman spectrascopy 32 2.2.8 Stress Measurement System 33 2.3 References 35 Chapter 3. Fabrication of cavity engineered sapphire substrate and its effect on stress reduction in GaN layer 36 3.1 Introduction 36 3.2 Experimental procedure 38 3.3 Results and discussion 42 3.3.1 Formation of photoresist Pattern 42 3.3.2 Amorphous Al2O3 deposition and thermal treatment 46 3.3.3 Growth of GaN on CES 54 3.3.4 Stress reduction in GaN layer on various CES 62 3.4 Summary 75 3.5 References 76 Chapter 4. Ultra-thin compliant sapphire membrane for the growth of GaN 79 4.1 Introduction 79 4.2 Experimental procedure 84 4.3 Results and discussion 87 4.3.1 Fabrication of sapphire membrane 87 4.3.2 Growth evolution of GaN 90 4.3.3 Structural properties of GaN and sapphire membrane 92 4.3.4 Analysis of dislocations 95 4.3.5 Reduction of strain in GaN 101 4.4 Summary 107 4.5 References 108 Chapter 5. Linearly polarized emission in c-plane InGaN/GaN LED 110 5.1 Introduction 110 5.2 Experimental procedure 113 5.3 Results and discussion 117 5.3.1 Peeling off GaN layer 117 5.3.2 Coalesced GaN layer and InGaN/GaN MQW on stripe pattern 120 5.3.3 Charateristic of InGaN/GaN MQW structure 124 5.3.4 Stress analysis 130 5.3.5 Linearly polarized emission of InGaN/GaN MQW structure 136 5.4 Summary 141 5.5 References 142 Chapter 6. Conclusion 145 ๊ตญ๋ฌธ ์ดˆ๋ก 147 Publication list 150Docto

    ์ฝ”์—”์ž์ž„B12์ƒ์‚ฐ ๊ฐœ์„ ์„ ์œ„ํ•œ auxotrophic selection ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    No full text
    MasterCoenzyme B12 is an important cofactor involved in various metabolism and widely used in food, additives, and pharmaceuticals. Demand for coenzyme B12 steadily grows, but its chemical synthesis is highly complicated because of its complex structure. Microbial production of coenzyme B12 has recently attracted attention as an alternative. Especially using well-characterized microorganisms such as Escherichia coli as a host could be an efficient strategy for further engineering. In this study, we designed a novel strategy to improve the production of coenzyme B12 in previously engineered coenzyme B12 producing E. coli. First, the synthetic coenzyme B12 auxotrophic system was developed by using coenzyme B12โ€“dependent methionine synthases with deletion of coenzyme B12-independent methionine synthase in E. coli. The synthetic auxotroph system showed coenzyme B12-dependent auxotrophic growth. Then it was applied to coenzyme B12 producing strain, resulting in improvement of the specific production of coenzyme B12 by modulating plasmid copy numbers. Although the auxotroph system has severely reduced cell biomass due to insufficient methionine synthesis, additional engineering of the auxotroph system by the varied expression level of metH could significantly improve cell biomass and coenzyme B12 production. Consequently, we demonstrated that our novel strategy can be effectively used to improve coenzyme B12 production, and it could be further applied to other coenzyme B12 producing strains

    Controlling glycolytic flux for efficientย chemical production

    No full text
    2
    • โ€ฆ
    corecore