2 research outputs found

    Verification of Ship Energy Efficiency Improvement by Antifouling Coating Performance

    No full text
    ํ•ด์šด์—…์— ์žˆ์–ด์„œ ์„ ๋ฐ•์€ ๊ฐ€์žฅ ํฐ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์„ ๋ฐ• ์šด์˜์‹œ ์ง€์ถœ๋˜๋Š” ๋น„์šฉ์€ ํ•ด์šด์—…์˜ ๊ฒฝ์˜์„ฑ๊ณผ์— ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ํ†ต์ƒ์ ์œผ๋กœ ์„ ๋ฐ•์šด์˜๋น„์šฉ์˜ 50%์ด์ƒ์„ ์ฐจ์ง€ํ•˜๋Š” ์—ฐ๋ฃŒ๋น„๋Š” ์„ ๋ฐ•์˜ ์—๋„ˆ์ง€ํšจ์œจ์— ๋”ฐ๋ผ ์ฐจ๋ณ„๋˜๋ฉฐ ์ด๋Š” ํ•ด์šด์‚ฌ์˜ ๊ฒฝ์Ÿ๋ ฅ๊ณผ ์ง๊ฒฐ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์„ ๋ฐ•์ด ์šดํ•ญํ•จ์— ๋”ฐ๋ผ ๋ฐœ์ƒ๋˜๋Š” Biofouling(์„ ์ฒด ์˜ค์†)์œผ๋กœ ์ธํ•œ ์„ ์ฒด์„ฑ๋Šฅ์ €ํ•˜ ์ตœ์†Œํ™”์˜ ๋ฐฉ์•ˆ์ธ Antifouling coating์˜ ์„ฑ๋Šฅ์„ ISO19030์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹œ๊ณ„์—ด ๋ถ„์„ํ•˜๊ณ  Antifouling coating์„ ํƒ์˜ ์ค‘์š”์„ฑ์„ ์ž…์ฆํ•˜๊ณ  ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•ด์šด์—…์—์„œ ์šฐ์„ ์ ์œผ๋กœ ๊ณ ๋ คํ•ด์•ผ ํ•  ๊ฒฝ์˜์„ฑ๊ณผ ๋ฐ Global Regulation์— ๋™์‹œ์— ๋ถ€ํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํšจ๊ณผ์„ฑ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ Antifouling coating์˜ ์„ ํƒ์ž„์„ ์ œ์‹œํ•œ๋‹ค. ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๋”์šฑ ๋” ์ค‘์š”์‹œ๋˜๊ณ  ์žˆ๋Š” ์ง€๊ตฌ์˜จ๋‚œํ™” ๋ฐ ์ด์ƒ๊ธฐํ›„ ๋“ฑ์„ ์ง€์—ฐ ๋˜๋Š” ๋ง‰๊ธฐ์œ„ํ•ด ์„ ๋ฐ•์—์„œ ๋ฐฐ์ถœ๋˜๋Š” ํƒ„์†Œ๋ฐฐ์ถœ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด IMO์—์„œ๋Š” ์ €ํ™ฉ์„ ๋ฐ•์—ฐ๋ฃŒ์œ (Low Sulphur cap) ์‚ฌ์šฉ ๋ฐ ์„ ๋ฐ•์˜ ์—๋„ˆ์ง€ํšจ์œจ์— ๋Œ€ํ•œ EEDI, EEOI, EEXI, CII๋“ฑ์˜ ๊ทœ์ œ๋ฅผ ๋ฐœํšจ ๋˜๋Š” ๋ฐœํšจ ์˜ˆ์ •์ด๋ฉฐ, ์ด๋Š” ์„ ๋ฐ•์˜ ์—๋„ˆ์ง€ํšจ์œจ์„ ๊ทœ์ œ์ด์ƒ์˜ ํšจ์œจ๋กœ ์œ ์ง€ํ•ด์•ผ ํ•˜๊ฑฐ๋‚˜ ํ˜น์€ LNG, LPG, ์•”๋ชจ๋‹ˆ์•„, Biofuel๋“ฑ์˜ ๋Œ€์ฒด ์—ฐ๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํƒ„์†Œ๋ฐฐ์ถœ์„ ์ค„์ž„์œผ๋กœ์„œ ๊ทœ์ œ์— ๋ถ€ํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ ๋ฐ•์—๋„ˆ์ง€ ํšจ์œจ๊ด€๋ จํ•ด์„œ ์—ฐ๋ฃŒ์˜ ํ’ˆ์งˆ, ์„ ๋ฐ•์˜ ๋””์ž์ธ (์„ ๋ฐ•์˜ ์—”์ง„ํšจ์œจ์„ฑ, ํ”„๋กœํŽ ๋Ÿฌ๋””์ž์ธ, ์„ ์ฒด ๋””์ž์ธ ๋“ฑ)์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ๋Š” ์žˆ์—ˆ์œผ๋‚˜ ์„ ๋ฐ•์ด ์šดํ•ญ ํ•จ์— ๋”ฐ๋ผ ์ฃผ์–ด์ง„ ์„ ์ฒด์˜ ์„ ํ˜• ๋””์ž์ธ์—์„œ ์ตœ์ƒ์˜ ์„ฑ๋Šฅ์„ ๊ธฐ๋Œ€ํ•˜๊ธฐ ์œ„ํ•ด Biofouling์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์„ ์ฒด ์„ฑ๋Šฅ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•œ Antifouling coating์˜ ์„ฑ๋Šฅ๋ถ„์„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•จ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, IMO์—์„œ๋Š” ์„ ๋ฐ•์˜ ์„ ์ฒด์— ๋ถ€์ฐฉ๋˜๋Š” ํ•ด์–‘์ƒ๋ฌผ๋กœ ์ธํ•ด ํ•ด์–‘์ƒ๋ฌผ์˜ ์„œ์‹์ง€์— ๋”ฐ๋ฅธ ๊ต์ฐจ์˜ค์—ผ์— ๋Œ€ํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ์œผ๋กœ Biofouling management guideline์„ ๋ฐœํ‘œ ์˜ˆ์ •์ด๋‹ค. ์ด๋Š” Biofouling์ด ๋ฐœ์ƒํ•˜์ง€ ์•Š๋„๋ก ๋ฏธ์—ฐ์— ๋ฐฉ์ง€ํ•˜๋Š” Antifouling coating์ด Biofouling management guideline์— ๋ถ€ํ•ฉ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๋งค๋ ฅ์ ์ธ ๋Œ€์•ˆ์œผ๋กœ ๋งŽ์€ ๊ด€์‹ฌ์„ ๊ฐ€์งˆ ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ISO19030 (Measurement of changes in hull and propeller performance) ๋ถ„์„๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฒŒํฌ์„  1์ฒ™์˜ 9.5๋…„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ž…๊ฑฐ ์ˆ˜๋ฆฌ ๊ธฐ์ค€์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ Antifouling coating์˜ In-service performance๋ฅผ ๋ถ„์„ํ•˜์˜€๊ณ  ์ปจํ…Œ์ด๋„ˆ์„  5์ฒ™์˜ ์ž…๊ฑฐ ์ˆ˜๋ฆฌ ํ›„ 25~35๊ฐœ์›” ๋™์•ˆ์˜ In-service performance๋ฅผ ์ „์ฒด ์‹œ์žฅํ‰๊ท ์„ฑ๋Šฅ ๋Œ€๋น„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผAntifouling coating์˜ ์„ฑ๋Šฅ์— ๋”ฐ๋ผ ๋ฒŒํฌ์„ ์˜ ๊ฒฝ์šฐ 17.7%(60๊ฐœ์›”๊ธฐ์ค€), ์ปจํ…Œ์ด๋„ˆ์„ ์˜ ๊ฒฝ์šฐ 6.97~10.32%(25~35๊ฐœ์›”๊ธฐ์ค€)์˜ ํšจ์œจ์ฐจ์ด๋ฅผ ์ž…์ฆ ํ•˜์˜€๋‹ค. ์ด๋Š” ์ฃผ์–ด์ง„ ์„ ์ฒด์˜ ์ตœ์ƒ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” Antifouling coating์˜ ์„ฑ๋Šฅ์ด ์ค‘์š”ํ•œ ์ง€ํ‘œ๋ผ๋Š” ๊ฒƒ์„ ์ž…์ฆํ•˜์˜€๊ณ  ๋ณธ ์—ฐ๊ตฌ๊ฐ€ ํ•ด์šด์ข…์‚ฌ์ž๋“ค์—๊ฒŒ Antifouling coating์„ ํƒ์˜ ์ค‘์š”์„ฑ์„ ์ธ์ง€์‹œํ‚ค๊ณ  ์‹ค๋ฌด์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ค‘์š”ํ•œ ์—ฐ๊ตฌ์ž๋ฃŒ๊ฐ€ ๋˜์—ˆ์œผ๋ฉด ํ•œ๋‹ค. ํ›„ํ–‰ ์—ฐ๊ตฌ์—์„œ๋Š” ๋” ๋งŽ์€ ์„ ๋ฐ•์˜ ๋ถ„์„์„ ํ†ตํ•ด ์‹œ์žฅ์˜ ์–ด๋– ํ•œ Antifouling coating์ด ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๋Š”์ง€ ๊ทธ๋ฆฌ๊ณ  ์–ด๋– ํ•œ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์š”๊ตฌ ๋˜์–ด ์ง„๋‹ค.Ships are most important assets in shipping business and reducing operational expenditure is crucial for running a profitable business. Fuel cost which takes normally 50% of operational expenditure depends on ship energy efficiency and it is directly related with ship operatorโ€™s competitiveness. This study proves that the choice of antifouling coating, a solution to prevent biofoulings during in-service sailing period, is critical by analyzing reliable method ISO19030. This study proposes that high-performance antifouling coating is one of the most attractive solutions to running profitable business while complying with global regulations. The IMO has enforced regulations to controlling Co2 emissions such as low Sulphur fuel cap and EEDI, EEOI, EEXI and CII for the purpose of preventing global warming and abnormal climate. Therefore, ship operators are required to manage ship energy efficiency to comply with regulations or reduce Co2 emission by burning alternative fuel sources like LNG, LPG, Ammonia, biofuel, and so on. A shipโ€™s overall energy efficiency is determined by its design (i.e., engine, propeller, and hull design) and the way how it is operated. While there are studies for shipโ€™s design, only few studies have addressed underwater hull and propeller surfaces, which are prone to mechanical surface damages and biofouling. To this end, this study proves that managing sustainable clean hull condition by antifouling coating increases ship energy efficiency compared to average hull efficiency during ships in-service period caused by deterioration of hull and biofouling. Additionally, while the IMO plans to release biofouling management guidelines, less biofouling would mean a lower risk of spread of non-native invasive aquatic species that may be transported on ship hulls. According to the biofouling management guidelines, antifouling coating performance becomes an issue in the shipping industry. In this study, the dataset is collected for 1 Bulk carrier analyzed by ISO19030 in-service performance and compared to dry docking intervals for 9.5 years. In addition, five (5) Container carriers are analyzed by ISO19030 in-service performance and compared to market average performance during 25Month to 35Month after dry dock. The analysis results show the efficiency differences of 17.7% and 6.97~10.32% for a bulk carrier (60Month) and container carriers (25~35Months), respectively. The results of analysis prove that antifouling coating performance contributes hull efficiency based on given hull design. Therefore, choice of antifouling coating is one of the solutions to maximize hull efficiency in given hull design while complying with new regulations and guidelines. Therefore, it is of utmost importance for ship operators to take proper actions for the competitive edge and decarbonization. This study can show the importance of choice of antifouling to practitioners when they exercise daily business. Further study is required to evaluate which is best performance antifouling coating by more case studies and to find out the limitations of antifouling coating.Contents i List of tables iii List of figures iv Abstract v ๊ตญ๋ฌธ์ดˆ๋ก vii I. Introduction 1 1. Purpose of study 1 2. Study structure 2 II. Literature Review 4 1. Shipping Industry (Overall industry background) 4 2. Comply with regulations 5 2.1 Biofouling management โ€“ spreading invasive aquatic species 6 2.1.1 AFS convention 7 2.1.2 BWM convention 7 2.1.3 Glofouling partnership 7 2.2 Green House Gas 7 2.2.1 EEDI 8 2.2.2 SEEMP & EEOI 9 2.2.3 EEXI & CII 11 3. Shipping Business โ€“ Running a profitable and successful business 13 3.1 Ship energy efficiency 13 III. Hull performance 15 1. Biofouling 15 1.1 Introduction 15 1.2 Increase OPEX and GHG 19 2. Antifouling coatings 20 2.1 Introduction 20 2.2 Antifouling coating history 20 IV. Methodology 20 1. Antifouling performance 20 1.1 ISO19030 20 1.1.1 Introduction 20 1.1.2 ISO19030-1 21 1.1.3 ISO19030-2 22 1.1.4 ISO19030-3 24 1.2 Sample & Data Collection 24 V. Finding and discussion 25 1. Define market average speed loss by hull and propeller performance 26 2. Antifouling performance analysis 27 VI. Conclusion 49 1. Contribution of the study 49 2. Limitations and future research 49 3. Implications for practitioners 50 Reference 51 Appendix I 54 Appendix II 59 Appendix III 64 Appendix IV 69 Appendix V 74Maste
    corecore