165 research outputs found

    ๋‹ค์ „์ œ ๊ฒฝ์Ÿ์— ์กด์žฌํ•˜๋Š” ์ „๋žต์  ๋ชจ๋ฉ˜ํ…€: 5์ „ 3์„ ์Šน์ œ, ๋น„๋Œ€์นญ ์ฐธ๊ฐ€์ž ๋ชจ๋ธ์˜ ๊ท ํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ๊ฒฝ์ œํ•™๋ถ€, 2021. 2. Dmitry A. Shapiro.This paper shows the solution of the fully rational model of the Best-of-Five rounds' contest between symmetric players. The complexity of the equilibrium in a fully rational model of the best-of-N contest between asymmetric players rapidly increases as N increases, so we find the general form of the solution first and use them to get the equilibrium at each stage. We will see how the asymmetry between the players affects the probability of winning at each stage and what characteristics of equilibrium have. We find that the results are consistent with those in the previous study, which used the Best-of-Three model with asymmetric players. We suggest the reason why the Best-of-Five model is better to distinguish the effect of strategic momentum and psychological momentum. Also, We suggest testable hypotheses, interpretations of results, and theoretical frequencies calculated based on the equilibrium as a benchmark for the test using the professional tennis data like that have done in the previous study.์‚ผ์„ธํŒ์ด๋ผ๋Š” ๋ง์ด ๋ˆ„๊ตฌ์—๊ฒŒ๋„ ๋‚ฏ์„ค๊ฒŒ ๋Š๊ปด์ง€์ง€ ์•Š์„ ๋งŒํผ ๋‹ค์ „์ œ ํ˜•์‹์˜ ๊ฒฝ์Ÿ์€ ์ผ์ƒ์ ์ธ ๊ฐ€์œ„๋ฐ”์œ„๋ณด ๊ฒŒ์ž„๋ถ€ํ„ฐ, ํ”„๋กœ ์Šคํฌ์ธ  ๊ฒฝ๊ธฐ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง„๋‹ค. ํŠนํžˆ ์—ฌ๋Ÿฌ ์ข…๋ชฉ์—์„œ ์ •๊ทœ์‹œ์ฆŒ ์ดํ›„์˜ ํ”Œ๋ ˆ์ด์˜คํ”„๋‚˜ ํ† ๋„ˆ๋จผํŠธ์˜ ์ƒ์œ„ ๋ผ์šด๋“œ๋Š” ๊ฑฐ์˜ ๋Œ€๋ถ€๋ถ„ ๋‹ค์ „์ œ ํ˜•์‹์œผ๋กœ ์ง„ํ–‰๋œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ๊ด€์‹ฌ์„ ๋‘๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ๋‹ค์ „์ œ์—์„œ ์กด์žฌํ•˜๋Š” ๋ชจ๋ฉ˜ํ…€์ด๋‹ค. ๋‹ค์ „์ œ์˜ ๋งค ๊ฒฝ๊ธฐ ๊ฒฐ๊ณผ๊ฐ€ ๊ฐ ํ”Œ๋ ˆ์ด์–ด ๋˜๋Š” ํŒ€์˜ ์—ญ๋Ÿ‰์— ์˜ํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ๊ฒฐ์ •๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ด์ „ ๊ฒฝ๊ธฐ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ ์ดํ›„ ๊ฒฝ๊ธฐ์˜ ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ์ค€๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฐ ํ˜„์ƒ์€ ํ–‰๋™์—ฐ๊ตฌํ•™์ด๋‚˜ ๊ฒฝ์ œํ•™ ๊ณตํ†ต์˜ ๊ด€์‹ฌ ์ฃผ์ œ์ด๋ฉฐ, ๋Œ€ํ‘œ์ ์œผ๋กœ ์‹ฌ๋ฆฌ์  ๋ชจ๋ฉ˜ํ…€(Psychological Momentum)๊ณผ ์ „๋žต์  ๋ชจ๋ฉ˜ํ…€(Strategic Momentum)์ด ๋‹ค์ „์ œ์—์„œ ์—ฐ์Šน์„ ์•ผ๊ธฐํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ์š”์ธ์œผ๋กœ ๊ฑฐ๋ก ๋œ๋‹ค. ์ดˆ๊ธฐ์˜ ์—ฐ๊ตฌ์—์„œ๋Š” ๋™์งˆ์ ์ธ ์ฐธ๊ฐ€์ž ๊ฐ„์˜ 3์ „ 2์„ ์Šน์ œ ๊ฒฝ์Ÿ์—์„œ ๊ฐ ๋ผ์šด๋“œ์˜ ๊ฒฐ๊ณผ๊ฐ€ ๋‘ ์ฐธ๊ฐ€์ž์˜ ์„ ํƒ๋œ ๋…ธ๋ ฅ ์ˆ˜์ค€์— ์˜ํ•ด ํ™•๋ฅ ์ ์œผ๋กœ ๊ฒฐ์ •๋œ๋‹ค๋Š” ๊ฐ€์ • ํ•˜์—์„œ ๋ชจ๋ธ์„ ๋ถ„์„ํ•˜๊ณ , ํ”„๋กœํ…Œ๋‹ˆ์Šค๊ฒฝ๊ธฐ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ๊ฒ€์ •์„ ํ•˜์˜€๋‹ค. ์ดํ›„ ์—ฌ๊ธฐ์— ์ฐธ๊ฐ€์ž ๊ฐ„์˜ ๋น„๋Œ€์นญ์„ฑ์„ ๋„์ž…ํ•œ ์ด๋ก ์  ๋ชจ๋ธ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ์กด ์—ฐ๊ตฌ๋ณด๋‹ค ๋” ํญ๋„“์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฒ€์ •ํ•œ ์—ฐ๊ตฌ์—์„œ 1) ์‹ฌ๋ฆฌ์  ๋ชจ๋ฉ˜ํ…€์ด ๋ถ€์žฌํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ๋ผ์šด๋“œ๋Š” ์ „๋žต์  ๋ชจ๋ฉ˜ํ…€์œผ๋กœ ์ž˜ ์„ค๋ช…์ด ๊ฐ€๋Šฅํ•˜๊ณ  2) ์ „์ฒด์ ์œผ๋กœ ์ „๋žต์  ๋ชจ๋ฉ˜ํ…€๊ณผ ์‹ฌ๋ฆฌ์  ๋ชจ๋ฉ˜ํ…€์ด ํ•จ๊ป˜ ์ž‘์šฉํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๋น„๋Œ€์นญ์  ์ฐธ๊ฐ€์ž๋“ค์— ์˜ํ•œ 3์ „ 2์„ ์Šน์ œ์˜ ์ด๋ก ์  ๋ชจ๋ธ์„ ํ™•์žฅํ•˜์—ฌ 5์ „ 3์„ ์Šน์ œ์˜ ์„ค์ •์—์„œ์˜ ๊ท ํ˜•์„ ๋„์ถœํ•˜๊ณ , ๊ฒฐ๊ณผ๋ฅผ ํ•ด์„ํ•˜์—ฌ ๋” ํญ๋„“์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ๊ฒ€์ •์˜ ์ค€๊ฑฐ๋กœ ์ œ์‹œํ•˜๊ณ ์ž ํ•œ๋‹ค. ํ…Œ๋‹ˆ์Šค ์ข…๋ชฉ ์ค‘ ๊ฐ€์žฅ ์ธ๊ธฐ๊ฐ€ ๋งŽ์€ ๋ฉ”์ด์ € ํ† ๋„ˆ๋จผํŠธ ๋‚จ์ž ๋ถ€๋ฌธ์€ ๋Œ€๋ถ€๋ถ„ 3์„ ์Šน์ œ๋กœ ์ง„ํ–‰๋œ๋‹ค. ๋น„๊ต์  ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ์˜ ์„ค์ •์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์—ญ์ง„๊ท€๋‚ฉ์˜ ๊ณผ์ •์—์„œ ๋น„๋Œ€์นญ์˜ ์ •๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณ€์ˆ˜์˜ ์กด์žฌ๋กœ ์ธํ•ด ๋‹ค์ „์ œ์˜ ๋ผ์šด๋“œ ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก ๋…ผ๋ฌธ์˜ ๋ถ€๋ก์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด ๊ท ํ˜•์˜ ๋ณต์žก์„ฑ์ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด์—, ์šฐ์„  ์ด ๋…ผ๋ฌธ์˜ ๋ชจ๋ธ์—์„œ ์ผ๋ฐ˜์ ์ธ ๊ท ํ˜•์˜ ํ˜•ํƒœ๋ฅผ ๋ถ„์„ํ•œ ๋’ค, ์—ญ์ง„ ๊ท€๋‚ฉ์˜ ์ˆœ์„œ๋ฅผ ๋”ฐ๋ผ ๊ฐ ๋ผ์šด๋“œ์—์„œ์˜ ๊ท ํ˜•์„ ๋„์ถœํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ํ•ด์„ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์˜ ์ „์‹ ์ธ 2์„ ์Šน์ œ ๋น„๋Œ€์นญ ์ฐธ๊ฐ€์ž ๋ชจ๋ธ์—์„œ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๋ก ๋“ค์ด 3์„ ์Šน์ œ ๋ชจ๋ธ์—์„œ๋„ ์ผ๊ด€๋˜๊ฒŒ ํ™•์ธ๋˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์˜ ๊ท ํ˜•์„ ํ•ด์„ํ•˜๋Š” ๊ณผ์ •์—์„œ 2์„ ์Šน์ œ์˜ ๋ชจ๋ธ์—์„œ๋Š” ์กด์žฌํ•˜์ง€ ์•Š์•˜๋˜, ๋‹ค์ค‘ ๊ฒฝ๋กœ๋ฅผ ๊ฐ€์ง๊ณผ ๋™์‹œ์— ์ „๋žต์  ๋ชจ๋ฉ˜ํ…€์ด ์ ์ˆ˜๊ฐ€ ์•ž์„œ๊ณ  ์žˆ๋Š” ํ”Œ๋ ˆ์ด์–ด์—๊ฒŒ ์กด์žฌํ•˜๋Š” ๋…ธ๋“œ๊ฐ€ ์ƒˆ๋กญ๊ฒŒ ๋“ฑ์žฅํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•จ์œผ๋กœ์จ, 3์„ ์Šน์ œ ๋ชจ๋ธ๋กœ ํ™•์žฅํ•˜์—ฌ ๋ถ„์„ํ•˜๋Š” ์˜์˜๋ฅผ ์ œ์‹œํ•จ๊ณผ ๋™์‹œ์— ๋” ๊ธด ๋‹ค์ „์ œ์˜ ๋ชจ๋ธ๊ณผ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜๋ฉด ๋‘๊ฐ€์ง€ ๋ชจ๋ฉ˜ํ…€์ด ์ž‘์šฉํ•˜๋Š” ์ •๋„๋ฅผ ๊ฒ€์ •์„ ํ†ตํ•ด ๋”์šฑ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ ์ „๋žต์  ๋ชจ๋ฉ˜ํ…€์˜ ์กด์žฌ์— ๋Œ€ํ•œ ๊ฐ•๋ ฅํ•œ ๊ทผ๊ฑฐ๋กœ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๋Š” ์ถ”๋ก ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด์˜ ์—ฐ๊ตฌ์—์„œ ์ด๋ก ์  ๋ชจ๋ธ๊ณผ ์‹ค์ œ ๊ฒฝ๊ธฐ์˜ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๋น„๊ต๋ฅผ ์œ„ํ•ด ์Šคํฌ์ธ  ๋ฒ ํŒ…์—์„œ์˜ ๋ฐฐ๋‹น๋ฅ  ๊ธฐ๋ก์„ ์ด์šฉํ•˜์˜€๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€์˜ ๋น„๊ต๊นŒ์ง€ ์ด๋ฃจ์–ด์ง€๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด, ๋ณธ๋ฌธ ๋งˆ์ง€๋ง‰ ๋ถ€๋ถ„์— ์ด๋ก ์ ์œผ๋กœ ๋„์ถœ๋œ ์ „์ฒด ๊ท ํ˜• ์Šน๋ฅ ๊ณผ ๊ฐ ๋ผ์šด๋“œ์˜ ์Šน๋ฅ  ๊ฐ„ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ ์ˆ˜์‹๊ณผ ๊ทธ๋ž˜ํ”„๋ฅผ ์ œ์‹œํ•˜๊ณ  ํ•ด์„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ด ๋…ผ๋ฌธ์„ ๋งˆ์น˜๊ฒŒ ๋œ๋‹ค.1 Introduction 4 2 Literature Review 7 3 Model 10 3.1 Elements of the Best-of-Five game . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Equilibrium in an one-stage game . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Equilibrium in a two-stage game . . . . . . . . . . . . . . . . . . . . . . . 15 4 Equilibrium of Best-of-Five Contest Game 17 4.1 Round 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Round 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Round 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Round 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Round 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.6 Comparison of winning probabilities . . . . . . . . . . . . . . . . . . . . . 32 5 Theoretical Frequencies 42 6 Conclusions 45 7 References 47 A Notations 51 B Derivation of 3.3.1 51 C Derivation of 3.3.2 53 C.1 Continuation value at B node . . . . . . . . . . . . . . . . . . . . . . . . . 53 C.2 Continuation value at C node . . . . . . . . . . . . . . . . . . . . . . . . . 54 C.3 Difference values of first stage . . . . . . . . . . . . . . . . . . . . . . . . . 54 C.4 Simpli cation of d1A; d2A . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C.4.1 Numerator of d1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 C.4.2 Numerator of d2A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 C.4.3 Simple expression of d1A , d2A . . . . . . . . . . . . . . . . . . . . 57 D Expressions omitted in the text 59 Abstract in Korean (๊ตญ๋ฌธ์ดˆ๋ก) AcknowledgementMaste

    TEM-CL ๊ธฐ์ˆ ์„ ํ†ตํ•œ MLCC๋‚ด BaTiO3 ์œ ์ „์ฒด์˜ ๊ฒฐํ•จ ๋ถ„ํฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2019. 2. ๊น€์˜์šด.Cathodoluminescence (CL)๋Š” ๊ณ ์ฒด์ธ ๋ฌผ์งˆ์—์„œ X-ray์—์„œ๋ถ€ํ„ฐ ๊ฑฐ์˜ ์ ์™ธ์„ ์— ์ด๋ฅด๋Š” ๊ด‘์ž์˜ ์ „์ž ์ž๊ทน์— ์˜ํ•ด ๋ฐฉ์‚ฌ๋˜๋Š” ๋ฐœ๊ด‘์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ด ์ „์ž๊ธฐ ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ ์ž์™ธ์„ ๋ถ€ํ„ฐ ์ค‘๊ฐ„ ์ ์™ธ์„ ์œผ๋กœ ์ƒ์„ฑ ๋œ ๋ฐฉ์‚ฌ๋Šฅ์„ CL์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ด CL์€ ๋งŽ์€ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š”๋ฐ ๋Œ€ํ‘œ์ ์œผ๋กœ ๊ณต๊ฐ„์  ๋˜๋Š” ์ŠคํŽ™ํŠธ๋Ÿผ ์  ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ CL์€ BaTiO3, SrTiO3, PbTiO3 ๋“ฑ์˜ perovskite ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์„ธ๋ผ๋ฏน ์—ฐ๊ตฌ์— ์žˆ์–ด ๋‹ค์–‘ํ•œ ์„ธ๋ผ๋ฏน ์‚ฐํ™”๋ฌผ์˜ ํšจ์œจ์ ์ธ ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฏ€๋กœ ์„ธ๋ผ๋ฏน ์—ฐ๊ตฌ์— ์ผ๋ฐ˜์ ์œผ๋กœ ์ ์šฉ๋˜๋Š” ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜์ด๋‹ค[8]. ๋˜ํ•œ CL์€ light transport์ด๋‚˜, ๋ฐ˜๋„์ฒด ๋“ฑ์„ ํฌํ•จํ•˜๋Š” electronic structure of substances์˜ ์‚ฐ๋ž€์„ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๋”ฐ๋ผ์„œ CL์€ ๊ธฐ์ดˆ ์—ฐ๊ตฌ๋กœ๋„ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ metrology and failure analysis์™€ ๊ฐ™์€ ์‚ฐ์—…๊ณ„์™€ ์ง์ ‘์ ์ธ ๊ด€๋ จ์ด ์žˆ๋Š” ์‘์šฉ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. Multilayer Ceramic Capacitor (MLCC) ์‹œ์žฅ์˜ ์„ฑ์žฅ์œผ๋กœ defects์— ๋Œ€ํ•œ๋ณด๋‹ค ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”์‹œ ๋˜๊ณ , ๋•Œ๋ฌธ์— ์ œํ’ˆ์˜ ์‹ ๋ขฐ์„ฑ์€ ํฐ ๊ด€์‹ฌ์‚ฌ๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ์ด์— ๋”ฐ๋ผ MLCC์—์„œ ์‚ฌ์šฉ๋˜๋Š”BaTiO3 ์œ ์ „์ฒด์— ๊ด€ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ cathodoluminescence ๊ธฐ๋ฒ•์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์ง€๋งŒ ์ง€๊ธˆ๊นŒ์ง€๋Š” SEM (Scanning Electron Microscopy-Cathodoluminescence)-CL์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์—ฐ๊ตฌ์— ์น˜์ค‘๋˜์–ด ์žˆ์—ˆ๋‹ค. ๋ณธ ์‹คํ—˜์—์„œ๋Š” ์ €๋ฐฐ์œจ ๋ฐ ์ €ํ•ด์ƒ๋„์— ๋Œ€ํ•œ SEM-CL์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜์—ฌ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ณ ์ž Transmission Electronic Microscopy (TEM)-CL์„ ์‚ฌ์šฉํ•˜์—ฌ BTO ์œ ์ „์ฒด๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ ์ง€๊ธˆ๊นŒ์ง€ ๋ณด๊ณ ๋˜์–ด ์˜จ ๋ฐด๋“œ ๊ฐญ ๊ตฌ์กฐ์™€ ๊ณต๊ทน์˜ ์—๋„ˆ์ง€ ์ค€์œ„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐ ์œ ํ˜•์˜ ๊ฒฐํ•จ (์‚ฐ์†Œ ๋ฐ ๋ฐ”๋ฅจ ๊ณต๊ทน)์€ monochromatic CL ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ๋ถ„ํฌ๋„ ๋ฐ ์ƒ๋Œ€ ๋†๋„๋ฅผ ์‹œ๊ฐํ™”๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋‘ ๊ฐœ์˜ ๋ณด๊ณ ๋˜์ง€ ์•Š์€ peaks๊ฐ€ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ์ด๋Š” TEM์˜ SEM์— ๋น„ํ•ด ๋” ์ข‹์€ ํ•ด์ƒ๋„์™€ ๋” ๋†’์€ ๋ฐฐ์œจ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณด๊ณ ๋˜์ง€ ์•Š ์€ peaks๊ฐ€ ๊ด€์ฐฐ๋œ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. MLCC์—๋Š” ๋งŽ์€ ์›์†Œ๋“ค์ด ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•˜์—ฌ doping์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ๊ฒฌ ๋œ ๋‘ ๊ฐœ์˜ ๋ณด๊ณ ๋˜์ง€ ์•Š์€ peaks๋Š” dopants๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ ๋˜์—ˆ๋‹ค๊ณ  ์ถ”์ •ํ•˜์˜€๋‹ค. ๋‘ ๊ฐœ์˜ ๋ณด๊ณ ๋˜์ง€ ์•Š์€ peaks์˜ ์›์ธ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด monochromatic ์ด๋ฏธ์ง€๋ฅผ Energy Dispersive X-Ray Spectroscopy(EDS) mapping image์™€ ๋น„๊ตํ•˜๋ฉฐ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ peaks๋Š” ๊ฐ๊ฐ Zr๊ณผ Y ์›์†Œ๋กœ ์ธํ•ด ์ƒ์„ฑ๋œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ฐ๊ฐ์˜ ์›์†Œ์˜ ๋ถ„ํฌ๋„์™€ ์ƒ๋Œ€์ ์ธ ๋†๋„ ๋˜ํ•œ ์‹œ๊ฐํ™”ํ•˜์˜€๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ๋Š” ๋ณด์ด์ง€ ์•Š๋Š” ๊ฒฐํ•จ์„ ์‹œ๊ฐํ™”ํ•˜๊ณ  BaTiO3 ๋‚ด๋ถ€์˜ ๋ฐœ๊ด‘ ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐ๋˜๊ณ  ํ–ฅํ›„ ์ ˆ์—ฐ ์ €ํ•˜ ๋“ฑ์˜ ๋ฌธ์ œ ์‹œ ๊ฒฐํ•จ์˜ ์ด๋™ ํŒŒ์•…์— ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐ๋œ๋‹ค.Cathodoluminescence (CL) is an electron stimulated emission of photons ranging from x-rays to nearly infrared rays from materials that are solid in nature. In this regard therefore, the radiation generated from ultraviolet to mid-infrared in the electromagnetic spectrum is known as CL. From the resultant luminescence, either spatial or spectral analysis can be obtained. It is one of the commonly applied advance techniques found to be highly flexible since it offers a useful analysis of variety of ceramic oxides, alternatively referred to as perovskite glass ceramics such as BaTiO3, SrTiO3, PbTiO3[8]. In addition, CL is used to study fundamental aspects of light transport, electronic structure of substances which may include semiconductors and scattering among other aspects. In this regard therefore, CL acts a helpful source of information which can be used for fundamental research and applied research which has a direct link to industry, for instance, metrology and failure analysis. With growing of Multilayer Ceramic Capacitor (MLCC) market, the reliability of the product became a great issue of concern because more reliable data about defects was needed. A lot of studies about BaTiO3 dielectrics in MLCC were done with cathodoluminescence technique but they were limited to Scanning Electron Microscopy-Cathodoluminescence (SEM-CL). Due to the limitation of SEM-CL regarding low magnification and low resolution and the fact that Transmission Electronic Microscopy (TEM) does not have such limitations, home-built TEM-CL was chosen to investigate BTO dielectrics. In this regard therefore, BaTiO3 dielectrics in MLCC were investigated using TEM-CL. The investigation revealed two aspectsfirstly, the band gap structure and energy levels were revealed. Through monochromatic CL images of each types of defects (oxygen and barium vacancies), their distribution and relative concentration were visualized. In addition, two unreported peaks were found. The explanation for this could be probably because of the fact that TEM had better resolution and higher magnification as compared to SEM. Regarding the two unreported peaks which were found, we estimated that they were from dopants since in MLCC, many elements are added for reliability. To identify the origin of the two unreported peaks, the monochromatic images were subjected to further investigations along with Energy Dispersive X-Ray Spectroscopy(EDS) mapping. The peaks were found to be Zirconium (Zr) and yttrium (Y). Their concentrations and distributions were also visualized. It is thought that these results can benefit in visualization of invisible defects as well as understanding of the emission behavior of BaTiO3 microstructureChapter 1. Introduction 1 1.1 Trends of multi layer ceramic capacitor 1 1.2 Cathodoluminescence 5 1.3 Experimental details 5 Chapter 2. Idea of finding atomic-level defects 9 2.1 Cathodoluminescence spectrum analysis 9 2.2 Catholuminescence image and distribution of BaTiO3 10 2.3 Contour map 14 Chapter 3. Identification of unreported peaks 16 3.1 Origin of unknown peaks 16 3.2 Monochromatic image and EDS mapping comparison 17 3.3 Distribution of identified elements 22 Chapter 4. Summary 24 Bibliography 25 Abstract(in korean) 30Maste

    ์Šคํด๋ ˆ๋กœ์Šคํ‹ด์— ์˜ํ•œ ์œˆํŠธ ์‹ ํ˜ธ์ „๋‹ฌ ์–ต์ œ ๊ธฐ์ „์˜ ๊ตฌ์กฐ์  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ƒ๋ช…๊ณผํ•™๋ถ€, 2021. 2. ์ตœํฌ์ •.Wnt signaling plays an important role in embryonic development, morphogenesis, and bone homeostasis. Wnt ligands bind to Frizzled receptors to induce several signal pathways. In particular, the low-density lipoprotein receptor-related protein 6 (LRP6) co-receptor is an essential participant in the ฮฒ-catenin-dependent Wnt signaling pathway. The LRP6 ectodomain binds Wnt proteins as well as Wnt inhibitors such as sclerostin (SOST), which negatively regulates Wnt signaling in osteoblasts. SOST is thereby responsible for maintaining bone homeostasis by inhibiting osteoblast differentiation. Since a strategy to suppress SOST was proposed as a new method of osteoporosis treatment, structural studies have become increasingly important. Although LRP6 ectodomain 1 (E1) is known to interact with SOST, several unresolved questions remain, such as why SOST binds to LRP6 E1E2 with higher affinity than to the E1 domain alone. Here, I show the crystal structure of the LRP6 E1E2โ€“SOST complex with two interaction sites in tandem. An unexpected additional binding site was identified between the C-terminus of SOST and the LRP6 E2 domain. This novel interaction was confirmed by microscale thermophoresis (MST)-based in vitro binding and cell-based Wnt signaling assays, and its functional significance was further demonstrated in vivo using Xenopus laevis embryos. Together, my results provide insights into the mechanisms underlying the SOST inhibition of Wnt signaling. Additionally, an advanced model of bone homeostasis regulation was established.์œˆํŠธ ์‹ ํ˜ธ์ „๋‹ฌ์€ ๋ฐฐ์•„ ๋ฐœ์ƒ, ํ˜•ํƒœ ํ˜•์„ฑ, ๊ณจ ํ•ญ์ƒ์„ฑ ๋“ฑ์— ์žˆ์–ด์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋‹ด๋‹นํ•œ๋‹ค. ์œˆํŠธ ๋ฆฌ๊ฐ„๋“œ๋Š” ํ”„๋ฆฌ์ฆ๋“œ ๋ง‰๊ด€ํ†ต์ˆ˜์šฉ์ฒด์— ๊ฒฐํ•ฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ•˜์œ„ ์‹ ํ˜ธ๋ฅผ ์œ ๋„ํ•˜๋ฉฐ ํŠนํžˆ ๋ฒ ํƒ€-์นดํ…Œ๋‹Œ ์˜์กด ์œˆํŠธ ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ์—๋Š” ์ €๋ฐ€๋„ ์ง€๋‹จ๋ฐฑ์งˆ ์ˆ˜์šฉ์ฒด ๊ด€๋ จ ๋‹จ๋ฐฑ์งˆ 6 (LRP6) ๋ณด์กฐ ์ˆ˜์šฉ์ฒด๊ฐ€ ํ•„์ˆ˜์ ์œผ๋กœ ์ฐธ์—ฌํ•œ๋‹ค. ์ด LRP6 ๋‹จ๋ฐฑ์งˆ์˜ ์„ธํฌ์™ธ๋„๋ฉ”์ธ์—๋Š” ์œˆํŠธ ๋‹จ๋ฐฑ์งˆ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ์กฐ์ ˆ์ž ๋‹จ๋ฐฑ์งˆ์ด ๊ฒฐํ•ฉํ•˜์—ฌ ์ •๊ตํ•˜๊ฒŒ ์‹ ํ˜ธ๋ฅผ ์กฐ์œจํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณจ์กฐ์ง์—์„œ ๋ฐœํ˜„๋˜๋Š” ์Šคํด๋ ˆ๋กœ์Šคํ‹ด (SOST) ๋‹จ๋ฐฑ์งˆ์€ LRP6์— ๊ฒฐํ•ฉํ•ด ์œˆํŠธ ์‹ ํ˜ธ์ „๋‹ฌ์„ ๋ฐฉํ•ดํ•˜๋Š” ์กฐ์ ˆ์ž๋กœ ์กฐ๊ณจ์„ธํฌ์˜ ๊ณจ์„ธํฌ ๋ถ„ํ™”๋ฅผ ์–ต์ œํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด SOST๋Š” ๊ณจ ํ˜•์„ฑ ์–ต์ œ์ž๋กœ ๊ธฐ๋Šฅํ•˜์—ฌ ๊ณจ ํ•ญ์ƒ์„ฑ ์œ ์ง€์— ์ค‘์š” ์—ญํ• ์„ ๋‹ด๋‹นํ•œ๋‹ค. ์ด์™€ ํ•จ๊ป˜ SOST๋ฅผ ์–ต์ œํ•˜๋Š” ์ „๋žต์ด ๊ณจ๋‹ค๊ณต์ฆ ์น˜๋ฃŒ์˜ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์œผ๋กœ ์ œ์‹œ๋˜๋ฉด์„œ ๊ด€๋ จ ๊ตฌ์กฐ ์—ฐ๊ตฌ์™€ ๋ณตํ•ฉ์ฒด ์—ฐ๊ตฌ๊ฐ€ ์ค‘์š”ํ•ด์กŒ๋‹ค. ๊ณผ๊ฑฐ ํ•ต์ž๊ธฐ๊ณต๋ช…๋ถ„๊ด‘๋ฒ• ๊ธฐ๋ฐ˜ SOST ๊ตฌ์กฐ๋ถ„์„๊ณผ LRP6 ์„ธํฌ์™ธ๋„๋ฉ”์ธ 1 (E1)-SOST ํŽฉํƒ€์ด๋“œ ๋ณตํ•ฉ์ฒด ๊ฒฐ์ •๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด SOST์˜ loop2 ๋ถ€๋ถ„์ด LRP6์— ๊ฒฐํ•ฉํ•˜์—ฌ WNT ์‹ ํ˜ธ์ „๋‹ฌ์„ ๋ฐฉํ•ดํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ์ž‘์šฉ๊ธฐ์ „ ๋ชจ๋ธ์€ SOST loop2 ํŽฉํƒ€์ด๋“œ๋ณด๋‹ค ๋†’์€ SOST์˜ LRP6 ๊ฒฐํ•ฉ๋ ฅ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์—†์—ˆ๊ณ  LRP6 ์„ธํฌ์™ธ๋„๋ฉ”์ธ 1 (E1) ๋ณด๋‹ค LRP6 ์„ธํฌ์™ธ๋„๋ฉ”์ธ 1-2 (E1E2)์— SOST๊ฐ€ ๋” ๋†’์€ ๊ฒฐํ•ฉ๋ ฅ์„ ๋ณด์ด๋Š” ํ˜„์ƒ ๋˜ํ•œ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” X-ray ๊ฒฐ์ •ํ•™์„ ํ†ตํ•ด LRP6 E1E2-SOST ๋ณตํ•ฉ์ฒด์˜ ์‚ผ์ฐจ์› ๊ตฌ์กฐ๋ฅผ ํ•ด์„ํ•˜์˜€๋‹ค. ๋ฐํ˜€๋‚ธ ๋ณตํ•ฉ์ฒด ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด SOST์˜ C-๋ง๋‹จ๊ณผ LRP6 E2 ๋„๋ฉ”์ธ ์‚ฌ์ด์˜ ์ถ”๊ฐ€์ ์ธ ๊ฒฐํ•ฉ ๋ถ€์œ„๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  loop2 ํŽฉํƒ€์ด๋“œ์™€ ๋”๋ถˆ์–ด ๋‘ ๊ฐœ์˜ ์ƒํ˜ธ์ž‘์šฉ ๋ถ€์œ„๊ฐ€ ๋‚˜๋ž€ํžˆ ์žˆ๋Š” ๊ฒฐํ•ฉ ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด ์ƒˆ๋กœ์šด C-๋ง๋‹จ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์€ ๋ฏธ์„ธ ๊ทœ๋ชจ ์—ด ์˜๋™ (MST) ๊ธฐ๋ฐ˜ in vitro ํ•ด๋ฆฌ์ƒ์ˆ˜ ์ธก์ • ๋ฐ ์„ธํฌ ๊ธฐ๋ฐ˜ ์œˆํŠธ ํ™œ์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ Xenopus laevis ๋ฐฐ์•„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์ฒด ๋‚ด์—์„œ SOST์˜ loop2์™€ C-๋ง๋‹จ์˜ ์œˆํŠธ ์‹ ํ˜ธ์ „๋‹ฌ ์–ต์ œ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋ถ„์ž ์ˆ˜์ค€์—์„œ ์œˆํŠธ ์‹ ํ˜ธ์ „๋‹ฌ์— ๋Œ€ํ•œ SOST์˜ ์ƒˆ๋กœ์šด ์–ต์ œ ์ž‘์šฉ๊ธฐ์ „์„ ์ œ์‹œํ–ˆ๊ณ  ๊ณจ ํ•ญ์ƒ์„ฑ ์กฐ์ ˆ์˜ ์ •๊ตํ•œ ๋ชจ๋ธ์„ ์„ธ์šธ ์ˆ˜ ์žˆ์—ˆ๋‹ค.ABSTRACT 1 CONTENTS 3 LIST OF FIGURES 6 Chapter I. Introduction 1.1. Background 9 1.1.1. Cell signaling and structural biology 9 1.1.2. Wnt signaling 9 1.1.3. Co-receptor LRP6 and Sclerostin 12 1.2. Purpose of this study 16 1.2.1. Limitation of previous research 16 1.2.2. Significance and application 16 Chapter II. Material and Methods 2.1. Protein complex expression and purification 19 2.2. Crystallization and data collection 21 2.3. Crystal structure determination 21 2.4. SEC-MALS experiment 22 2.5. Fluorescence-SEC experiment 23 2.6. Cell-based activity assay 23 2.7. Western blot and ELISA analyses 24 2.8. Microscale thermophoresis (MST) 25 2.9. Sample preparation for crosslinking-MS experiment 25 Chapter III. Results 3.1 Structural analysis of LRP6 โ€“ SOST binding 28 3.1.1. Crystal structure of LRP6-SOSTtr177 complex 28 3.1.2. Comparing two SOST-binding sites on LRP6 43 3.2 Functional study of the mechanism of SOST inhibition 53 3.2.1. Evaluation of the role of SOST C-tail in LRP6 binding 53 3.2.2. Functional implications of the SOST C-tail in WNT1 69 3.2.3. Functional analysis of SOST C-terminus in X. laevis embryos 81 3.2.4. SOST-dependent inhibition of Wnt-signaling by different Wnt subtypes 84 Chapter IV. Conclusion 89 References 96 Appendix 103 ๊ตญ๋ฌธ์ดˆ๋ก 110Docto

    ์ดˆ๋ฐฉ์‚ฌ ์–‘์ž ์—ด๊ธฐ๊ด€์˜ ์‹คํ—˜์  ๊ตฌํ˜„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2022.2. ์•ˆ๊ฒฝ์›.Recent emergence of micro- and nano-scale mechanical systems has drawn much interests in thermodynamics in the quantum regime. In those systems, engine performance such as efficiency and power output can be improved with a help from quantum mechanical phenomena. It is suggested that by introducing nonlinearity of superradiance the output power of the quantum engine can be greatly enhanced. Although several quantum engines have been recently realized, a quantum-enhanced near-unity efficiency engine which can do a mechanical work associated with volume changes has not been demonstrated so far. In this thesis, we describe the development of a superradiant photonic engine driven by a heat reservoir composed of atoms and photonic vacuum. Atoms prepared in a coherent superposition state traverse the cavity to inject quantum coherence into the engine. This leads to about 40-fold enhancement of the effective engine temperature in the expansion stage while the thermal contact remains unchanged. We show that a near-unity efficiency can be achieved owing to the highly enhanced engine temperature. The engine operates efficiently even when the temperatures of hot and cold reservoirs were switched. The observed engine output power exhibited a nonlinear growth with the atomic injection rate. The first proof-of-principle demonstration of the quantum engine utilizing superradiance can be utilized in quantum mechanical heat transfer as well as in boosting engine powers.๋ถ„์•ผ๋ฅผ ๋ง‰๋ก ํ•˜๊ณ  ๋งˆ์ดํฌ๋กœ, ๋‚˜๋…ธ ์Šค์ผ€์ผ ์‹œ์Šคํ…œ ์—ฐ๊ตฌ๋“ค์ด ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜๋ฉด์„œ ์–‘์ž ์˜์—ญ์—์„œ์˜ ์—ด์—ญํ•™์ด ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ์‹œ์Šคํ…œ์—์„œ๋Š” ํšจ์œจ์ด๋‚˜ ์ถœ๋ ฅ๊ณผ ๊ฐ™์€ ์—”์ง„ ์„ฑ๋Šฅ์„ ์–‘์ž์—ญํ•™์  ์›๋ฆฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ดˆ๋ฐฉ์‚ฌํ˜„์ƒ์˜ ๋น„์„ ํ˜•์„ฑ์„ ๋„์ž…ํ•˜์—ฌ ์–‘์ž์—”์ง„์˜ ์ถœ๋ ฅ์„ ์ฆ๋Œ€ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ด๋ก ์  ์ œ์•ˆ์ด ์ด๋ฃจ์–ด์ง„ ๋ฐ” ์žˆ๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ๋ช‡๋ช‡ ์–‘์ž์—”์ง„์ด ๊ตฌํ˜„๋˜์—ˆ์œผ๋‚˜ ์–‘์ž์—ญํ•™์  ์œผ๋กœ ์ฆ๊ฐ€๋œ 1์— ๊ฐ€๊นŒ์šด ํšจ์œจ์„ ๋ณด์ด๋ฉด์„œ ์—ญํ•™์  ์ผ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ์—”์ง„์€ ์•„์ง๊นŒ์ง€ ๊ตฌํ˜„๋œ ๋ฐ” ์—†๋‹ค. ๋ณธ๊ณ ์—์„œ๋Š” ์›์ž๋น”์„ ์—ด์›์œผ๋กœ ํ•˜๋Š” ์ดˆ๋ฐฉ์‚ฌ ๊ด‘์ž ์—”์ง„์— ๋Œ€ํ•ด ์„œ ๊ธฐ์ˆ ํ•œ๋‹ค. ์›์ž๋“ค์€ ๊ฒฐ๋งž์€ ์ค‘์ฒฉ ์ƒํƒœ๋กœ ์ค€๋น„๋˜์–ด ๊ณต์ง„๊ธฐ๋ฅผ ์ง€๋‚˜๋ฉด์„œ ์—”์ง„์— ์–‘์ž ๊ฒฐ๋งž์Œ์„ ๊ณต๊ธ‰ํ•œ๋‹ค. ๊ณต๊ธ‰๋œ ๊ฒฐ๋งž์Œ์œผ๋กœ ์—ด์ ‘์ด‰์˜ ๋ณ€ํ™”์—†์ด ์—”์ง„์˜ ์œ ํšจ์˜จ๋„๋ฅผ 40๋ฐฐํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ด๋Ÿฌํ•œ ์„ฑ์งˆ์„ ์ด์šฉํ•˜์—ฌ 1์— ๊ฐ€๊นŒ์šด ํšจ์œจ์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๋œจ๊ฒ๊ณ  ์ฐจ๊ฐ€์šด ์—ด์›์˜ ์˜จ๋„๊ฐ€ ์„œ๋กœ ๋ฐ”๋€Œ์–ด๋„ ์—”์ง„์ด ์—ฌ์ „ํžˆ ๋™์ž‘ํ•˜์˜€๋‹ค. ์ดˆ๋ฐฉ์‚ฌ ์—ด์›์œผ๋กœ ๋™์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์ถœ๋ ฅ์€ ์›์ž ์ฃผ์ž…๋ฅ ์— ๋Œ€ํ•ด ๋น„์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ดˆ๋ฐฉ์‚ฌ ์–‘์ž์—”์ง„์„ ์›๋ฆฌ์ ์œผ๋กœ ์ตœ์ดˆ ๊ตฌํ˜„ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์–‘์ž ์—ญํ•™์  ์—ด์ˆ˜์†ก๊ณผ ์—”์ง„ ์ถœ๋ ฅ ์ฆ๋Œ€์— ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Abstract i Contents ii List of Figures v List of Tables xiv 1 Introduction 1 2 Apparatus 6 2.1 Atomic beam 7 2.2 High finesse cavity 15 2.3 Laser stabilization 26 2.4 Pump laser 39 2.5 Cavity stabilization 42 2.6 Frequency control 45 3 Theory of superradiance in a cavity 48 3.1 Dicke state versus atomic coherent state 49 3.2 Theory of superradiant reservoir 53 3.3 Steady state : Thermal coherent state 57 3.4 Entropy of the thermal coherent state 62 3.5 Time evolution of the atomic state in a cavity 63 3.6 Time evolution of the atomic state in a pump laser beam 67 4 Frequency pulling/pushing effect 73 4.1 Analytic theory of frequency pulling/pushing 73 4.2 Numerical simulation of frequency pushing 78 5 .Photonic heat engine 83 5.1 Atomic beam thermal reservoir 83 5.2 Photonic Stirling engine 89 5.3 Relationship between volume(pressure) and cavity resonance frequency(photon number) 93 5.4 Reservoir control 98 5.5 Photonic heat engine driven by thermal atoms102 6 Off-resonant superradiance 105 6.1 How to maximize emission 105 6.2 Building correlation between atoms 106 6.3 Evidence of superradiance 112 6.4 Spectrum of superradiance 115 7 Superradiant quantum engine 123 7.1 Thermal and coherence reservoir 123 7.2 Superradiant engine operation 126 7.3 Enhanced temperature and efficiency 131 8 Prospects 141 8.1 Quantum engine working on a squeezed reservoir 141 8.2 Sub-Poissonian-field superradiance 142 8.3 Optical clock based on a superradiant atomic beam 145 Bibliography 148 ์ดˆ ๋ก 156๋ฐ•

    Water level monitoring sensor systems using the Fiber Bragg grating for applying the vessel

    Get PDF
    In this research, Fiber Bragg Grating water monitoring sensor system was designed and its usefulness investigated. Biber Bragg Grating is one of the many types from the field of optics. The FBG water monitoring sensor system consists of 3 instruments and they are FBG, Cantilever and Buoy. The system is utilized by measuring the change of the refraction rate of the FBG. The wavelength of the FBG increases as the water inside the water tank increases and decreases if the water inside the water tank is decreased. All these can be picked up by the photo detector which displays the appropriate signal form by perceiving the changes of the electrical signal voltage. Various kinds of ship tank level measuring equipment such as the existing ultrasonic type, electric pressure typeha have been developed. For cases similar to ultrasonic type, the exceeding distance that could be measured beyond the maximum distance is 2 times lower. As for cases similar to the Pulse Radar type, the fluid pressure inside the tank changes with the electrostatic capacity and that signal changes due to the electric signal. Although it is usable, the electrical pressure has to be adjusted according to the type of liquid inside the tank which makes it complex to use. In this research, a Buoy is connected to the end of the Cantilever which enables the tank to estimate its minimum and maximum depth through the use of OSA and the LabVIEW program. In addition, the structural design that results in the optimum operating condition as well as the optimum performance could be found. This research has been going on for the reason of developing FBG water level monitoring sensor system for shipping use in which the FBG through the use of the Cantilver and Package could correctly obtain errors as well as sensitivityOptical Spectrum Analyzer) ๋ฐ LabVIEW ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์ž‘์—…์กฐ๊ฑด๊ณผ, ์ตœ์ ์˜ ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” ๊ตฌ์กฐ๋ฅผ ์ฐพ์•„ ๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์ž๋ฅผ ์บ”ํ‹ธ๋ ˆ๋ฒ„ ์™€ Package ์‹œ์ผœ ์˜ค๋™์ž‘ ๋ฐ ๊ฐ๋„๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์–ป๊ฒŒ ๋งŒ๋“ค์—ˆ๊ณ  ์„ ๋ฐ•์ ์šฉ์„ ์œ„ํ•œ ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์žํ˜• ์ˆ˜์œ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์„ผ์„œ ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ๋ชฉํ‘œ๋กœ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•ด ์™”๋‹ค.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ด‘ํ•™์  ๋ฐฉ๋ฒ•์— ์˜ํ•œ, ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์žํ˜• ์ˆ˜์œ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์„ผ์„œ ์‹œ์Šคํ…œ์„ ๊ณ ์•ˆํ•˜๊ณ  ์œ ์šฉ์„ฑ์„ ๊ฒ€ํ† ํ•ด ๋ณด์•˜๋‹ค. ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์žํ˜• ์ˆ˜์œ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์„ผ์„œ ์‹œ์Šคํ…œ์€ ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์ž, ์บ”ํ‹ธ๋ ˆ๋ฒ„(cantilever), Buoy์ด๋ผ๋Š” 3๊ฐ€์ง€ ์‹คํ—˜ ๋„๊ตฌ์— ์˜ํ•ด ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์ž์˜ ๊ตด์ ˆ๋ฅ ์ด ๋ณ€ํ™”๋Š” ๊ฒƒ์„ ์ด์šฉํ•œ ๊ฒƒ์ด๋‹ค. ๋ฌผํƒฑํฌ ์† ์ˆ˜์œ„์˜ ์ฆ๊ฐ€ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๊ด‘์„ฌ์œ  ๋ธŒ๋ž˜๊ทธ ๊ฒฉ์ž์˜ ๊ด‘์ด ์žฅํŒŒ์žฅ์œผ๋กœ ๊ตด์ ˆ๋˜๊ณ , ๋ฌผํƒฑํฌ ์† ์ˆ˜์œ„์˜ ๊ฐ์†Œ์˜ ๊ฒฝ์šฐ๋Š” ๊ด‘์ด ๋‹จํŒŒ์žฅ์œผ๋กœ ๊ตด์ ˆ๋˜์–ด ๊ด‘๊ฒ€์ถœ๊ธฐ(Photodetector)์— ๊ด‘์›์ด ๋„๋‹ฌ๋˜์–ด ์ „๊ธฐ์ ์ธ ์‹ ํ˜ธ ์ „์••์œผ๋กœ ๋ณ€ํ•˜์—ฌ ๊ฐ์ง€ํ•˜๋Š” ํ˜•ํƒœ์ด๋‹ค. ๊ธฐ์กด์˜ Ultrasonic type, Electric Pressure type ๋“ฑ์€ ์„ ๋ฐ•์˜ ๊ฐ์ข… Tank์˜ Level ์ธก์ •์šฉ ์žฅ๋น„๋กœ ์‘์šฉ ๋ฐœ์ „๋˜์–ด ์™”๋‹ค. Ultrasonic type ๊ฐ™์€ ๊ฒฝ์šฐ ์ตœ๋Œ€ ์‚ฌ์šฉ ๊ฑฐ๋ฆฌ๋ฅผ ๋„˜์–ด๊ฐ€๋Š” ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ • ํ•  ๊ฒฝ์šฐ ์ •๋„๋Š” 2๋ฐฐ๋กœ ๋‚ฎ์•„์ง€๋ฉฐ, Pluse Radar type ๊ฐ™์€ ๊ฒฝ์šฐ Tank ๋‚ด๋ถ€ ์œ ์ฒด์˜ ์••๋ ฅ์„ ์ •์ „์šฉ๋Ÿ‰์œผ๋กœ ๋ณ€ํ™”์‹œ์ผœ ๊ทธ ์‹ ํ˜ธ๋ฅผ ์ „๊ธฐ ์‹ ํ˜ธ๋กœ ๋ณ€ํ™”ํ•˜์—ฌ ์‚ฌ์šฉํ•˜๊ฒŒ ๋˜๋Š” ๋ฐ Tank ๋‚ด๋ถ€์˜ ์•ก์ฒด ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์ „์••๋ ฅ์„ ์กฐ์ •ํ•ด์ฃผ์–ด์•ผ ํ•˜๋Š” ๋ฒˆ๊ฑฐ๋กœ์›€์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์บ”ํ‹ธ๋ ˆ๋ฒ„ ๋์— Buoy๋ฅผ ์—ฐ๊ฒฐ ์‹œ์ผœ ์˜ˆ์ƒ ํ•  ์ˆ˜ ์žˆ๋Š” Tank ๋‚ด๋ถ€์˜ ์ตœ์†Œ ๋†’์ด ๋ฐ ์ตœ๋Œ€ ๋†’์ด๋ฅผ ๊ด‘ํ•™ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„๊ธฐ(OSA์ œ 1 ์žฅ ์„œ๋ก  = 1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ = 1 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋‚ด์šฉ = 2 ์ œ 2 ์žฅ FBG ์„ผ์„œ = 5 2.1 ๊ด‘์„ฌ์œ  ๊ตฌ์กฐ์™€ ์„ผ์„œ ์ข…๋ฅ˜ = 5 2.2 ๊ด‘์„ฌ์œ  ์„ผ์„œ ๋ณต์กฐ๊ธฐ์ˆ  = 7 2.3 FBG = 9 ์ œ 3 ์žฅ FBG ์„ผ์„œ์˜ ์˜จ๋„ ๋ณ€ํ™” ๋ฐ ๋ณ€ํ˜•๋ฅ  ์ธก์ • ์‹คํ—˜ = 18 3.1 ์‹คํ—˜ ๊ฐœ์š” = 18 3.2 FBG ์˜จ๋„ ๋ณ€ํ™” ์ธก์ • ์‹คํ—˜ = 18 3.3 FBG ์„ผ์„œ ๋ณ€ํ˜•๋ฅ  ์ธก์ • ์‹คํ—˜ = 20 ์ œ 4 ์žฅ FBG ์„ผ์„œ์˜ ์ˆ˜์œ„ ๊ฒ€์ถœ๊ธฐ ์‹คํ—˜ = 30 4.1 ์‹คํ—˜ ๊ฐœ์š” ๋ฐ ๋ฐฉ๋ฒ• = 30 4.2 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ = 42 ์ œ 5 ์žฅ FBG ์„ผ์„œ๋ฅผ ์ด์šฉํ•œ ์ˆ˜์œ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ = 43 5.1 ์‹คํ—˜ ๊ฐœ์š” ๋ฐ ๋ฐฉ๋ฒ• = 43 5.2 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ = 48 ์ œ 6 ์žฅ ๊ฒฐ๋ก  = 50 ์ฐธ๊ณ ๋ฌธํ—Œ = 5

    ์†Œ์•„์™€ ์„ฑ์ธ์—์„œ์˜ ๋‘๊ฐœ์ธ๋‘์ข… 233๋ก€์˜ ์ˆ˜์ˆ  ํ›„ ์žฅ๊ธฐ ์ถ”์  ๊ฒฐ๊ณผ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ(์‹ ๊ฒฝ์™ธ๊ณผ์ „๊ณต),2008. 8.Maste

    ๋ฌผ๋ฆฌํ•™ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•œ ๊ธฐํ•˜ํ•™์  ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์ž๋ฃŒ๊ตฌ์กฐ

    No full text
    Thesis (doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2002.Docto

    ๋ฐ์ดํ„ฐ ์›จ์–ดํ•˜์šฐ์ง•์˜ ํšจ์ต๊ณผ ์†์‹ค ๋ฐ ์‚ฐ์—…์ถ”์„ธ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฒฝ์˜ํ•™๊ณผ ๊ฒฝ์˜ํ•™์ „๊ณต,2000.Maste

    ๋ ™ํ‹ด์˜ ๋ผ์ด์†Œ์ข€ ๋‚ด Cathepsin A ํšจ์†Œ ๋ฐœํ˜„ ์ €ํ•˜๋ฅผ ํ†ตํ•œ ๊ฐœ์˜ ์•…์„ฑ ์—ผ์ฆ์„ฑ ์œ ์„ฑ์ข…์–‘ ์ „์ด ํ™œ์„ฑํ™” ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜์˜๊ณผ๋Œ€ํ•™ ์ˆ˜์˜ํ•™๊ณผ, 2021. 2. ์žฅ๊ตฌ.Canine malignant breast cancers present with a poor prognosis due to metastasis to other organs, such as lung and lymph node metastases. Unlike in human studies where obesity has been shown to increase the risk of breast cancer, this has not been well studied in veterinary science. In our preliminary study, I discovered that leptin downregulated cathepsin A, which is responsible for LAMP2a degradation. LAMP2a is a rate-limiting factor in chaperone-mediated autophagy and is highly active in malignant cancers. Therefore, in this study, alterations in metastatic capacity through cathepsin A by leptin, which are secreted at high levels in the blood of obese patients, were investigated. I used a canine inflammatory mammary gland adenocarcinoma (CHMp) cell line cultured with RPMI-1640 and 10% fetal bovine serum. The samples were then subjected to real-time polymerase chain reaction, Western blot, immunocytochemistry, and lysosome isolation to investigate and visualize the metastasis and chaperone-mediated autophagy-related proteins. Results showed that leptin downregulates cathepsin A expression at both transcript and protein levels, whereas LAMP2a, the rate-limiting factor of chaperone mediated autophagy, was upregulated by inhibition of LAMP2a degradation. Furthermore, leptin promoted LAMP2a multimerization through the lysosomal mTORC2/PHLPP1/AKT pathway. These findings suggest that targeting leptin receptors can alleviate breast cancer cell metastasis in dogs.ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๋œ ๋ฐ”๋กœ๋Š” chaperone mediated autophagy (CMA)๊ฐ€ ์•”์„ธํฌ์˜ ์ƒ์กด ๋ฐ ์ „์ด์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๋‹ค. CMA๋Š” ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด ๋‚ด KFERQ ๋ชจํ‹ฐํ”„๋ฅผ ๋ณด์œ ํ•œ ํŽฉํƒ€์ด๋“œ๋ฅผ ํ‘œ์ ์œผ๋กœ ์„ ํƒ์  ์ž๊ฐ€ํฌ์‹์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ธฐ์ „์œผ๋กœ, ์ธ๊ฐ„์˜ ์œ ๋ฐฉ์•”์—์„œ๋„ ๋†’์€ ์ˆ˜์ค€์œผ๋กœ ๋ฐœํ˜„๋˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์„ธํฌ ๋‚ด ๋ผ์ด์†Œ์ข€์˜ ํšจ์†Œ ์ค‘ ํ•˜๋‚˜์ธ ์นดํ…์‹  A๋Š” CMA์˜ ์†๋„ ์กฐ์ ˆ ์ธ์ž์ธ LAMP2a์˜ ๋ฐ˜๊ฐ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋Š”๋ฐ, ๋ณธ ์—ฐ๊ตฌ์˜ ์‚ฌ์ „ ์‹คํ—˜์—์„œ ๋ ™ํ‹ด์„ ๊ฐœ ์œ ์„ ์ข…์–‘ ์„ธํฌ์ฃผ (CHMp)์— ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ ์œ ์˜์ ์œผ๋กœ ๋ฐœํ˜„์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง€๊ธˆ๊นŒ์ง€ ๊ฐœ์˜ ์ข…์–‘ ์„ธํฌ์—์„œ CMA์™€ ์นดํ…์‹  A ๊ฐ„์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋Š” ์—ฐ๊ตฌ๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ ™ํ‹ด๊ณผ ๊ทธ ๊ธธํ•ญ์ œ์ธ Allo-aca๋ฅผ ์ ์šฉํ•˜์—ฌ CMA์˜ ํ™œ์„ฑ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ์ข…์–‘ ์„ธํฌ์˜ ์นจ์œค ๋ฐ ์ „์ด์— ์œ ์˜์ ์ธ ๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. CHMp ์„ธํฌ์ฃผ๋Š” RPMI-1640์— 10 % ์†Œํƒœ์•„ํ˜ˆ์ฒญ ๋ฐ 0.5% ๊ฒํƒ€๋งˆ์ด์‹ ์„ ํ•ญ์ƒ์ œ๋กœ์„œ ์ฒจ๊ฐ€ํ•˜์—ฌ ๋ฐฐ์–‘ํ•˜์˜€๋‹ค. ๋ณธ ์„ธํฌ์ฃผ๋ฅผ ์ด์šฉํ•˜์—ฌ 12 nM ๋ ™ํ‹ด, 100 nM Allo-aca๋ฅผ ์ฒ˜๋ฆฌํ•˜์˜€์œผ๋ฉฐ, ์‚ฌ์ „์‹คํ—˜์—์„œ ํ™•์ธํ•œ ์นดํ…์‹  A๋ฅผ siRNA transfection์„ ์ด์šฉํ•ด Knockdown ํ•˜์—ฌ ์นดํ…์‹  A ์œ ์ „์ž์˜ ์ข…์–‘ ์ „์ด ํ–ฅ์ƒ ํ‰๊ฐ€๋„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹คํ—˜๊ตฐ์˜ ๋ฐฐ์–‘์€ 24์‹œ๊ฐ„์œผ๋กœ ์„ค์ •ํ•˜์˜€๊ณ , ์ดํ›„ ์‹œ๋ฃŒ๋“ค์€ Real-time PCR, ์›จ์Šคํ„ด ๋ธ”๋ž, ๋ฉด์—ญ์„ธํฌํ™”ํ•™์—ผ์ƒ‰, ๋งคํŠธ๋ฆฌ๊ฒ” ์นจ์œค ์‹œํ—˜ ๊ทธ๋ฆฌ๊ณ  ๋ผ์ด์†Œ์ข€ ๋ถ„๋ฆฌ์— ์ ์šฉํ•˜์˜€๋‹ค. ์„ธํฌ ์ฆ์‹ ์‹คํ—˜์—์„œ ๋ ™ํ‹ด์€ ์œ ์˜์ ์œผ๋กœ ์ฆ์‹์ด ์ด‰์ง„๋˜๋Š” ํšจ๊ณผ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, Allo-aca์˜ ์ฒ˜๋ฆฌ๋กœ ์ฆ์‹์€ ์ฐจ๋‹จ๋˜์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ์นดํ…์‹  A KD ์„ธํฌ๋Š” ๋Œ€์กฐ๊ตฐ๊ณผ ๋น„๊ตํ•˜์—ฌ ์ฆ์‹์ด ์œ ์˜์ ์œผ๋กœ ์–ต์ œ๋˜์—ˆ๋Š”๋ฐ, ์ด๋Š” ํŠน์ • ์นดํ…์‹  A๊ฐ€ ์ €ํ•˜๋  ๊ฒฝ์šฐ ๊ฐˆ๋ฝํ† ์‹œ์•Œ๋ฆฌ์˜ค๋„์‹œ์Šค์ฆ (๋ผ์ด์†Œ์ข€์ถ•์ ์งˆํ™˜)์„ ์œ ๋ฐœํ•จ์— ๊ธฐ์ธํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ด์— ๋”ํ•˜์—ฌ, Allo-aca์˜ ๋‹จ๋… ์ฒ˜๋ฆฌ๋Š” CHMp ๋ฐ KD ๊ตฐ ๋ชจ๋‘์—์„œ ์„ธํฌ ์ฆ์‹์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์€ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋ ™ํ‹ด ์ฒ˜๋ฆฌ๊ตฐ๊ณผ ๊ธธํ•ญ์ œ ์ฒ˜๋ฆฌ๊ตฐ์„ ๋ถ„์ž์ˆ˜์ค€์—์„œ ๋น„๊ตํ•˜์˜€์„ ๋•Œ, ๋ ™ํ‹ด ์ฒ˜๋ฆฌ๊ตฐ์—์„œ ์นดํ…์‹  A์˜ mRNA ๋ฐ ๋‹จ๋ฐฑ์งˆ ์ˆ˜์ค€ ๋ชจ๋‘์—์„œ ๋ฐœํ˜„ ์ €ํ•˜๊ฐ€ ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด, Allo-aca์˜ ์ฒ˜๋ฆฌ๊ตฐ๋“ค(๋‹จ๋… ๋ฐ ๊ณต์ฒ˜๋ฆฌ)์€ ๋ ™ํ‹ด์˜ ๊ณต์ฒ˜๋ฆฌ๊ตฐ์—์„œ๋„ ๋Œ€์กฐ๊ตฐ๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ์œ ์˜์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋ ™ํ‹ด ์ฒ˜๋ฆฌ๊ตฐ์€ ์นจ์œค ์ง€ํ‘œ(Invasion index) ์ „์ด ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์‹คํ—˜์—์„œ ๋ ™ํ‹ด์€ ๋Œ€์กฐ๊ตฐ๊ณผ ๋‹ค๋ฅธ ์‹คํ—˜๊ตฐ๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ์œ ์˜์ ์œผ๋กœ ์นจ์œค ์ง€ํ‘œ๋ฅผ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ์ด์— ๋”ํ•ด, ์นดํ…์‹  A KD ์„ธํฌ์ฃผ์—์„œ Allo-aca๋ฅผ ์ฒ˜๋ฆฌํ•œ ๊ฒฝ์šฐ ์นจ์œค ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•œ ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์›จ์Šคํ„ด ๋ธ”๋ž ์‹คํ—˜์„ ํ†ตํ•œ ๋‹จ๋ฐฑ์ฒด ๋ถ„์„์—์„œ๋„ ์ข…์–‘ ์ „์ด ๊ด€์—ฌ ์ธ์ž ์ค‘ MMP9, Vimentin์˜ ๋ฐœํ˜„ ์ฆ๊ฐ€์™€ E-cadherin์˜ ๊ฐ์†Œ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ํŠน์ดํ•˜๊ฒŒ๋„, ์นดํ…์‹  A KD ์„ธํฌ๊ฐ€ CHMp ๋ณด๋‹ค ์œ ์˜์ ์œผ๋กœ ๋†’์€ MMP9 ๋ฐ Vimentin์˜ ๋ฐœํ˜„ ์ฆ๊ฐ€๋ฅผ ๋ณด์˜€๋Š”๋ฐ Allo-aca๋ฅผ ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ ์œ ์˜์ ์œผ๋กœ ๋ฐœํ˜„์ด ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ฆ‰, ๋ ™ํ‹ด์˜ ์นดํ…์‹  A ๋ฐœํ˜„ ์ €ํ•˜ ํšจ๊ณผ๋Š” Allo-aca์˜ CTSA ๋ฐœํ˜„ ์ด‰์ง„ ํšจ๊ณผ๋กœ ์ƒ์‡„๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ด๋ฅผ ๋ถ„์ž์ƒ๋ฌผํ•™์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ์›จ์Šคํ„ด ๋ธ”๋ž ์‹คํ—˜์—์„œ ๋ ™ํ‹ด์€ ์ „์‚ฌ์ฒด (mRNA)์™€ ๋ฒˆ์—ญ์ฒด (Protein) ์ˆ˜์ค€ ๋ชจ๋‘์—์„œ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ ๋ฐœํ˜„ ์ €ํ•˜๋ฅผ ํ™•์ธํ•˜์˜€๊ณ , ์ด์™€ ๋™์‹œ์— CMA์˜ ์†๋„ ์กฐ์ ˆ ์ธ์ž์ธ LAMP2a๋Š” ์นดํ…์‹  A ๋ฐœํ˜„ ๊ฐ์†Œ์— ์ด์ฐจ์ ์œผ๋กœ ๋ฐ˜๊ฐ๊ธฐ๊ฐ€ ์ง€์—ฐ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋ ™ํ‹ด์€ ๋ผ์ด์†Œ์ข€ ๋ง‰์˜ mTORC2 / PHLPP1 / AKT ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด PHLPP1์˜ ๋ฐœํ˜„ ์ƒ์Šน ๋ฐ pAKT1(ser473)์˜ ์ƒ์„ฑ ์–ต์ œ๋ฅผ ํ†ตํ•ด LAMP2a์˜ ์ค‘ํ•ฉํ™”๋ฅผ ์œ ๋„ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„๋งŒ ํ™˜์ž์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ํ˜ˆ์ค‘์— ๊ณ ๋†๋„๋กœ ๋ถ„ํฌํ•˜๋Š” ๋ ™ํ‹ด๊ณผ ๊ฐœ์˜ ์œ ์„ ์ข…์–‘ ์ „์ด๋Šฅ ํ™œ์„ฑํ™” ๊ธฐ์ „ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•˜์—ฌ ๋ถ„์ž์ƒ๋ฌผํ•™์  ๊ธฐ์ „์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ๋ ™ํ‹ด์ด ์„ ํƒ์  ์ž๊ฐ€ํฌ์‹์˜ ์ค‘์š”ํ•œ ์กฐ์ ˆ์ธ์ž์ธ ์นดํ…์‹  A ๋ฐœํ˜„ ์กฐ์ ˆ์„ ํ†ตํ•œ ์ „์ด๋Šฅ ํ™œ์„ฑํ™”๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ ™ํ‹ด ์ˆ˜์šฉ์ฒด๋ฅผ ํ‘œ์ ์œผ๋กœ ํ•˜๋Š” Allo-aca์˜ ์ „์ด๋Šฅ ์™„ํ™” ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์—ฌ ์•ž์œผ๋กœ ์•…์„ฑ ์œ ์„ ์ข…์–‘์— ์ดํ™˜๋œ ๋ฐ˜๋ ค๊ฒฌ ํ™˜์ž๋“ค์˜ ์ข…์–‘ ์—ฐ๊ตฌ ๋ฐ ์น˜๋ฃŒ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ์˜์˜๊ฐ€ ์žˆ๋‹ค.LITERATURE REVIEW ๏ผ‘ I. Introduction 7 II. Materials and Methods 9 2.1. Cell line and Cell Culture Methods 9 2.2. Chemicals and Antibodies 9 2.3. Reverse siRNA Transfection 11 2.4. Cell Proliferation Assay 13 2.5. Cell Invasion Assay 13 2.6. RNA Extraction and Real-Time Quantitative PCR analysis (RT-qPCR) 14 2.7 Immunocytochemistry (ICC) 16 2.8. Lysosome Isolation and Immunoblot 16 2.9. Western Blot Analysis 17 2.10. Statistical Analysis 18 III. Results 19 3.1 Leptin downregulates CTSA (Cathepsin A) and upregulates LAMP2a in CHMp cells. 19 3.2 Leptin promotes cell proliferation in CHMp cells. 23 3.3 Leptin stimulates epithelial-mesenchymal transition (EMT) in CHMp cells. 25 3.4 Leptin delays the degradation of LAMP2a through downregulation of CTSA. 28 3.5 Leptin may promote lysosomal LAMP2a multimerization through mTORC2/PHLPP1/AKT1 pathway. 28 IV. Discussion 31 V. Conclusions 34 REFERENCES 36 ๊ตญ๋ฌธ ์ดˆ๋ก 44Maste

    Genus 2์ธ ์ดˆํƒ€์› ์•”ํ˜ธ์‹œ์Šคํ…œ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ปดํ“จํ„ฐ๊ณตํ•™๊ณผ,2000.Maste
    • โ€ฆ
    corecore