6 research outputs found
๊ณ๋ฉด ๊ณต์ ์ ํตํ ๊ณ ์ฑ๋ฅ์ ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง ์ ์กฐ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ํํ์๋ฌผ๊ณตํ๋ถ(์๋์งํ๊ฒฝ ํํ์ตํฉ๊ธฐ์ ์ ๊ณต), 2020. 8. ์ฅ์ ์.Perovskite solar cells (PSCs) based on organic-inorganic halide perovskite (ABX3 structure) have rapidly developed as one of the most potent next-generation photovoltaic devices based on their extraordinary optical and physical properties. The photovoltaic performance of PSC, which has been swiftly improving to date, is comparable to commercial-silicon solar cells. In recent years, research trends are turning into real problems related to the actual use of PSCs in daily life, such as large-scale modularization, long-term stability, and toxicity testing for commercialization of PSCs. In particular, in terms of stability, decomposition of the perovskite by external stress factors (e.g. moisture, air, heat and etc.) and deterioration at the interface between a metal electrode and charge transport layer are important issues to be solved. Besides, it is necessary to ameliorate process efficiency due to the introduction of expensive metal electrodes and charge transport layers through a complicated process. One of the best alternatives to solving these problems is the manufacture of PSCs using a carbon electrode, which is an inexpensive and stable material and doesnt require the hole conductor.
Carbon electrode-based perovskite solar cells (C-PSCs) not only have high stability against moisture and thermal stress but also can be manufactured by introducing electrodes through various methods (e.g. screen printing, doctor blading, spraying, roll to roll, etc.), making PSCs suitable for mass production and enlargement. However, despite process efficiency and device stability, C-PSCs are less efficient than conventional metal electrode-based PSCs because of poor physical and chemical contact between the carbon electrode and the perovskite light-absorbing layer. Therefore, for practical use of C-PSCs, it is necessary to fabricate a high performance and highly stable C-PSC by the improvement of interfacial contact.
This dissertation describes the effective strategies to improve interfacial contact between the carbon electrode and perovskite in fabricating the C-PSCs through interface engineering based on various processes and materials. Specifically, the introduction of organic and inorganic materials through a solution process to induce the growth of the interfacial layer or adjusting the interfacial energy level of carbon electrode through a plasma process. Firstly, a two-dimensional perovskite (2D PSK) interfacial layer was introduced on a fabricated C-PSC using a bulky organic ligand (phenylethyl ammonium iodide, PEAI) solution. Introduced 2D PSK interfacial layer improved hole extraction ability, and inhibited interfacial charge recombination due to the aligned energy level. These results induced the performance of C-PSC. Also, it was confirmed that the stability of the device was further improved because the 2D PSK has high moisture and thermal stability. Secondly, a colloidal lead iodide (PbI2) capped with organic acids, that can be dispersed in a non-polar solvent was additionally introduced at the interface of the carbon/perovskite for the enhanced the interfacial contact. The prepared colloidal PbI2 was introduced at the interface without damaging the fabricated C-PSCs, and secondary growth of methylammonium lead iodide (MAPbI3) interfacial layer was induced by additional MAI (methylammonium iodide) treatment on the colloidal PbI2-treated C-PSC. Secondary growth of the MAPbI3 interfacial layer significantly improved device performance by maximizing the interfacial contact between the carbon electrode and perovskite layer compared to previous studies that induced performance enhancement by the additional introduction of organic ligands. Moreover, the device stability was improved due to the hydrophobic organic acid present during the formation of the interfacial MAPbI3 layer. Thirdly, the carbon electrode, in which fluorine atoms were introduced in a concentration gradient, was prepared based on the plasma process. As fluorine atoms having strong electron-withdrawing properties, were introduced into the carbon electrode, the work function of the carbon electrode and the HOMO energy level of the perovskite are well aligned with each other, thereby improving hole transporting ability, followed by the enhanced device performance. In addition, hydrophobic fluorine atoms were introduced into the hydrophobic carbon electrode, and C-PSCs having maximum moisture stability was produced by synergy effect. Accordingly, this study provides several strategies to further improve the long-term stability of PSCs, as well as how to improve the performance of C-PSC through various processes and materials-based interface engineering.์ ๊ธฐ-๋ฌด๊ธฐ ํ ๋ผ์ด๋ ํ๋ก๋ธ์ค์นด์ดํธ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ ๋ฐ์ด๋ ๊ดํ์ ๋ฐ ๋ฌผ๋ฆฌ์ ํน์ฑ์ ๊ธฐ์ดํ์ฌ ๊ฐ์ฅ ๊ฐ๋ ฅํ ์ฐจ์ธ๋ ๊ด์ ์ง ์ค ํ๋๋ก ๊ธ์ํ ๋ฐ์ ํด์๋ค. ํ์ฌ๊น์ง ๋น ๋ฅด๊ฒ ๊ฐ์ ๋ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง์ ๊ด๊ธฐ ์ ์ฑ๋ฅ์ ์์
์ฉ ์ค๋ฆฌ์ฝ ํ์์ ์ง์ ํ์ ํ๋ค. ์ต๊ทผ ์ฐ๊ตฌ ์ถ์ธ๋ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง์ ์์ฉํ๋ฅผ ์ํ ๋๊ท๋ชจ ๋ชจ๋ํ, ์ฅ๊ธฐ ์์ ์ฑ ๋ฐ ๋
์ฑ ํ
์คํธ์ ๊ฐ์ด ์ผ์ ์ํ์์ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง์ ์ค์ ์ฌ์ฉ๊ณผ ๊ด๋ จ๋ ์ค์ ๋ฌธ์ ๋ก ๋ฐ๋๊ณ ์๋ค. ํนํ ์์ ์ฑ ์ธก๋ฉด์์ ํ๋ก๋ธ์ค์นด์ดํธ์ ์๋ถ, ๋๊ธฐ ๋ฐ ์ด์ ์ํ ๋ถํด์ ์ ํ์ ๊ธ์์ ๊ทน ๋ฐ ์ ํ์ด๋์ธต๊ณผ์ ๊ณ๋ฉด ์ดํ๋ ๋ฐ๋์ ํด๊ฒฐํด์ผํ ๋ฌธ์ ์ด๋ค. ๋ ๋์๊ฐ, ๊ณ ๊ฐ์ ๊ธ์์ ๊ทน ๋ฐ ์ ํ์ด๋์ธต ๋์
์ ๊ณต์ ํจ์จ์ฑ์ด ๋จ์ด์ง๋ ๋ถ๋ถ๋ ๊ฐ์ ํด์ผํ ์ฌํญ์ด๋ค. ์ด๋ฌํ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๊ธฐ ์ํ ๋์ ์ค ํ๋๋ ์ ๋ ดํ๊ณ , ์์ ์ ์ธ ์นด๋ณธ ์ ๊ทน์ ์ด์ฉํ์ฌ ์ ๊ณต ์ ๋์ฒด ์์ด ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ฅผ ์ ์กฐํ๋ ๊ฒ์ด๋ค.
์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ ๋์ ์๋ถ ๋ฐ ์ด ์์ ์ฑ์ ๊ฐ์ง ๋ฟ๋ง ์๋๋ผ ๋ค์ํ ์ ๊ทน ๋์
๋ฐฉ๋ฒ์ ํตํด ์ ์กฐ๋ ์ ์์ผ๋ฏ๋ก, ๋๋ ์์ฐ ๋ฐ ์์ ๋ํํ์ ์ ํฉํ๋ค. ๊ทธ๋ฌ๋, ์ด์ ๊ฐ์ ๊ณต์ ํจ์จ์ฑ ๋ฐ ์ฅ์น ์์ ์ฑ์๋ ๋ถ๊ตฌํ๊ณ , ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ ์นด๋ณธ์ธต๊ณผ ํ๋ก๋ธ์ค์นด์ดํธ ๊ด ํก์์ธต ์ฌ์ด์ ๋ฌผ๋ฆฌ์ / ํํ์ ์ ์ด์ด ๋ถ๋ํ๊ธฐํ๋ฏ๋ก ์ข
๋์ ๊ธ์ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ณด๋ค ํจ์จ์ด ๋จ์ด์ง๋ค. ๋ฐ๋ผ์ ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง์ ์ค์ ์ ์์ฉํ๋ฅผ ์ํด์๋ ๊ณ๋ฉด ์ ์ด์ฑ ํฅ์์ ํตํด ๊ณ ์ฑ๋ฅ, ๊ณ ์์ ํ๋ ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ๋ฅผ ์ ์กฐํ ์ ์์ด์ผ ํ๋ค.
๋ณธ ๋
ผ๋ฌธ์์๋ ๋ค์ํ ๊ณต์ ๋ฐ ๋ฌผ์ง์ ๊ธฐ๋ฐ์ผ๋ก ํ ๊ณ๋ฉด ์์ง๋์ด๋ง์ ํตํด ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ฅผ ์ ์กฐํ ๋ ํ์ ์ ๊ทน๊ณผ ํ๋ก๋ธ์ค์นด์ดํธ์ ๊ณ๋ฉด ์ ์ด์ ๊ฐ์ ํ๋ ํจ๊ณผ์ ์ธ ์ ๋ต์ ์ ์ํ์๋ค. ์์ธํ๊ฒ๋, ์ฉ์ก ๊ณต์ ์ ํตํด ์ ๊ธฐ ๋ฐ ๋ฌด๊ธฐ ๋ฌผ์ง์ ๋์
ํ์ฌ ๊ณ๋ฉด ์ธต์ ์ฑ์ฅ์ ์ ๋ํ๊ฑฐ๋ ํ๋ผ์ฆ๋ง ๊ณต์ ์ ํตํด ํ์ ์ ๊ทน์ ๊ณ๋ฉด ์๋์ง ์์ค์ ์กฐ์ ํ์๋ค. ์ฒซ ๋ฒ์งธ๋ก, ๋ถํผ๊ฐ ํฐ ์ ๊ธฐ ๋ฆฌ๊ฐ๋ (ํ๋์ํธ์๋ชจ๋์์ค๋) ์ฉ์ก์ ์ด์ฉํ์ฌ ์ ์กฐ๋ ํ์ธํ
๋ ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง ์ ์ฒ๋ฆฌํ์ฌ, 2์ฐจ์ ํ๋ก๋ธ์ค์นด์ดํธ ๊ณ๋ฉด์ธต์ ๋์
ํ์๋ค. ๋์
๋ 2์ฐจ์ ํ๋ก๋ธ์ค์นด์ดํธ ๊ณ๋ฉด์ธต์ ์ ๋ ฌ๋ ์๋์ง ๋ ๋ฒจ ์์ค์ ์ ๊ณตํ๋ฉฐ, ์ ๊ณต ์ถ์ถ ๋ฅ๋ ฅ ํฅ์๊ณผ ๊ณ๋ฉด ์ ํ ์ฌ๊ฒฐํฉ์ ์ต์ ํ์๋ค. ์ด๋ฅผ ํตํด ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง ์ฑ๋ฅ์ ํฅ์์์ผฐ๋ค. ๋ํ, 2์ฐจ์ ํ๋ก๋ธ์ค์นด์ดํธ๋ ์๋ถ ๋ฐ ์ด ์์ ์ฑ์ด ๋์ ์์์ ์์ ์ฑ์ ๋์ฑ ๋์ด๋ ๊ฒ์ ํ์ธํ์๋ค. ๋ ๋ฒ์งธ๋ก, ๊ณ๋ฉด ์ ์ด์ฑ์ ๋์ฑ ํฅ์์ํจ ํ๋ก๋ธ์ค์นด์ดํธ ๊ณ๋ฉด์ธต์ ํ์ฑํ๊ธฐ ์ํด, ๋ฌด๊ทน์ฑ ์ฉ๋งค์ ๋ถ์ฐ๋ ์ ์๋ ์ ๊ธฐ์ฐ์ผ๋ก ๋๋ฌ์์ธ ์ฝ๋ก์ด๋ PbI2 ๋ฅผ ์ ์กฐํ์๋ค. ์ ์กฐ๋ ์ฝ๋ก์ด๋ PbI2๋ ์ ์กฐ๋ ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง์ ์์ ์์ ์์ด ๊ณ๋ฉด์ ๋์
๋์์ผ๋ฉฐ, ์ถ๊ฐ์ ์ธ ๋ฉํธ์๋ชจ๋ ์์ค๋ ์ฒ๋ฆฌ๋ฅผ ํตํด MAPbI3 ๊ณ๋ฉด์ธต์ ์ด์ฐจ์ฑ์ฅ์ ์ ๋ํ์๋ค. MAPbI3 ๊ณ๋ฉด์ธต์ ์ด์ฐจ์ฑ์ฅ์ ์ ๊ธฐ ๋ฆฌ๊ฐ๋ ์ฒ๋ฆฌ๋ง์ผ๋ก ์์กดํ๋ PbI2์ ๋ฐ์์ํค๋ ์ด์ ์ฐ๊ตฌ๋ค๊ณผ ๋น๊ตํ์์ ๋, ์นด๋ณธ ์ ๊ทน๊ณผ ํ๋ก๋ธ์ค์นด์ดํธ ๊ณ๋ฉด ์ ์ด์ฑ์ด ๊ทน๋ํ๋๋ฉฐ ์์ ์ฑ๋ฅ์ด ํฌ๊ฒ ํฅ์๋์๋ค. ๋ํ, ๊ณ๋ฉด์ธต์ด ํ์ฑ๋ ๋ ์กด์ฌํ๋ ์์์ฑ ์ ๊ธฐ์ฐ๋ค์ ์ํด ์์ ์์ ์ฑ ํฅ์์ ๊ธฐ์ธํ์๋ค. ์
์งธ๋ก, ํ๋ผ์ฆ๋ง ๊ณต์ ์ ๊ธฐ๋ฐ์ผ๋ก ๋ถ์๊ฐ ๋๋ ๊ตฌ๋ฐฐ๋ก ๋์
๋ ์นด๋ณธ ์ ๊ทน์ ์ ์กฐํ์๋ค. ์ ์ ๋๊ฐ ํน์ฑ์ด ํฐ ๋ถ์๊ฐ ์นด๋ณธ ์ ๊ทน์ ๋์
๋๋ฉฐ ์ ๊ทน์ ์ผ ํจ์์ ํ๋ก๋ธ์ค์นด์ดํธ์ ํธ๋ชจ ๋ ๋ฒจ์ ์๋์ง ๋ ๋ฒจ ์์ค ์ ๋ ฌ์ ๋ฐ๋ผ ์ ๊ณต ์์ก ๋ฅ๋ ฅ ํฅ์๋๋ฉฐ ์์์ ์ฑ๋ฅ์ ํฅ์์ ์ ๋ํ์๋ค. ๋ ๋์๊ฐ ์์์ฑ ๋ถ์ ์์๊ฐ ์์์ฑ ์นด๋ณธ ์ ๊ทน์ ๋์
๋๋ฉฐ ์๋์ง ํจ๊ณผ๋ก ์๋ถ ์์ ์ฑ์ด ๊ทน๋ํ๋ ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง๋ฅผ ์ ์กฐํ ์ ์์๋ค. ๋ฐ๋ผ์ ๋ณธ ๋
ผ๋ฌธ์ ๋ค์ํ ๊ณต์ /๋ฌผ์ง์ ๋ฐํ์ผ๋ก ํ ๊ณ๋ฉด ์์ง๋์ด๋ง์ ํตํด ์นด๋ณธ ์ ๊ทน ๊ธฐ๋ฐ ํ๋ก๋ธ์ค์นด์ดํธ ํ์์ ์ง์ ์ฑ๋ฅ ํฅ์ ๋ฐฉ๋ฒ์ ์ ์ํ ๋ฟ๋ง ์๋๋ผ ์์์ ์ฅ๊ธฐ ์์ ์ฑ๊น์ง ๋์ฑ ํฅ์์ํฌ ์ ์๋ ์ ๋ต์ ์ ์ํ๋ค.1. Introduction 1
1.1. Background 1
1.1.1. Organic-inorganic halid perovskite solar cells (PSCs) 1
1.1.2. Device architecture and fabrication of PSCs 8
1.1.3. Carbon electrode-based PSCs (C-PSCs) 13
1.1.4. Interface engineering of PSCs 19
1.1.4.1. Interface engineering based on solution process 23
1.1.4.1.1. 2D/3D hybrid PSCs based on bulk organic ligands 29
1.1.4.1.2. Interfacial passivated-PSCs based on excess PbI2 36
1.1.4.2. Interface engineering based on plasma process 44
1.2. Objectives and Outlines 49
1.2.1. Objectives 49
1.2.2. Outlines 50
2. Experimental Details 52
2.1. Interface engineering of C-PSCs based on 2D perovskite interfacial layer 52
2.1.1. Fabrication of C-PSCs with 2D perovskite interfacial layer 52
2.1.2. Characterization of C-PSCs with 2D perovskite interfacial layer 55
2.2. Interface engineering of C-PSCs based on secondary growth of MAPbI3 interfacial layer 57
2.2.1. Preparation of Colloidal PbI2 Solution 57
2.2.2. Fabrication of C-PSCs with secondary growth of MAPbI3 interfacial layer 57
2.2.3. Characterization of C-PSCs with secondary growth of MAPbI3 interfacial layer 59
2.3. Interface engineering of C-PSCs based on energy level adjustment via F-plasma treatment 63
2.3.1. Fabrication of C-PSCs with F-doped carbon 63
2.3.2. Characterization of C-PSCs with F-doped carbon 65
3. Results and Discussion 67
3.1. Interface engineering of C-PSCs based on 2D perovskite interfacial layer 67
3.1.1. Fabrication of interface-engineered C-PSCs with 2D perovskite 67
3.1.2. Photovoltaic performance of interface-engineered C-PSCs with 2D perovskite 79
3.1.3. Interfacial charge carrier dynamics in interface-engineered C-PSCs with 2D perovskite 88
3.1.4. Device stability of interface-engineered C-PSCs with 2D perovskite 97
3.2. Interface engineering of C-PSCs based on secondary growth of MAPbI3 interfacial layer 102
3.2.1. Synthesis of colloidal PbI2 and fabrication of C-PSCs with MAPbI3 interfacial layer 102
3.2.2. Characterization of colloidal PbI2-based MAPbI3 interfacial layer 115
3.2.3. Photovoltaic performance of C-PSCs with MAPbI3 interfacial layer 124
3.2.4. Interfacial charge carrier dynamics in C-PSCs with MAPbI3 interfacial layer 132
3.2.5. Device hysteresis and long-term stability of C-PSCs with MAPbI3 interfacial layer 147
3.3. Interface engineering of C-PSCs based on energy level adjustment via F-plasma treatment 153
3.3.1. Fabrication of F-doped C-PSCs 153
3.3.2. Photovoltaic performance of the F-doped C-PSCs 162
3.3.3. Interfacial charge carrier dynamics in F-doped C-PSCs 170
3.3.4. Ambient and moisture stabilities of F-doped C-PSCs 178
4. Conclusion 184
References 189
๊ตญ๋ฌธ์ด๋ก 204Docto
๋ค์ดํ ๋ก๋ฒค์ ์ผ๋ก๋ถํฐ ์์ธํธ์๋ฏธ๋ ธํ์ ํฉ์ฑํ๋ ๊ตฌ๋ฆฌ์ด๋งคํ ๊ณต์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ํํ์๋ฌผ๊ณตํ๋ถ, 2013. 2. ๊น์๊ท.Up to now, various kind of non-opioid analgesic drugs have been developed and their developments have been progressed to the improvement or the complement of weak point of the former analgesics at each time. In these days, one of them, acetaminophen (1) is known for the most widely used analgesics in the world on the account of the many advantages in terms of the medicinal application and few adverse effects in comparison with other analgesics.
However, the former synthetic process of acetaminophen (1) have many problems such as, generation of undesired isomer and use of strong, toxic acid and so on. These problems accompany additional purification steps and recycle of waste acids, finally, bring about the additional cost that affect the production cost of acetaminophen (1).
In this paper, we are going to discuss our efforts to develop both an efficient and an economic process for acetaminophen (1) using Cu-catalyzed reaction from dihallobenzenes. We could not only improve the drawbacks of the former synthetic process, but also could make the synthetic process more eco-friendly under mild reaction conditions and the synthetic steps shorter without the additional purification.ABSTRACT................................................................ โ
ฐ
LIST OF FIGURES................................................................... โ
ฒ
LIST OF TABLES.................................................... โ
ด
LIST OF SCHEMES................................................. โ
ท
LIST OF ABBREVIATIONS....................................... โ
ธ
Introductionโฆ...................................................... 1
1. History of non-opioid analgesic drugs................... 3
1.1. Salicylic acid..................................................... 3
1.2. Antipyrine, Pyradon and dipyrone...................... 5
1.3. Aspirin................................................................ 8
1.4. Paracetamol (Acetaminophen)........................ 10
2. Research plan....................................................... 14
2.1. Former synthetic process............................... 14
2.2. New synthetic process.............................15
Results and discussion.................................................... 19
1. Acetamidation............................................... 20
1.1. Screening of the amount of acetamide................. 20
1.2. Screening of Cu-catalysts............................... 21
1.3. Screening of bases......................................... 23
1.4. Screening of ligands........................................... 25
1.5. Screening of solvents...........................................28
1.6. Screening of reaction times............................... 30
1.7. Screening of temperatures............................. 31
1.8. Pressure, another factor for results.......................... 32
1.9. Application to other substrates............................ 35
2. Hydroxylation.........................................................37
2.1. Screening of Cu-catalysts................................. 37
2.2. Screening of bases............................................. 39
2.3. Screening of ligands......................................... 41
2.4. Screening of solvents......................................... 43
2.5. Screening of reaction times.................................. 45
2.6. Screening of temperatures........................... 46
2.7. Endeavor to decrease the amount of acetanilide.......47
2.8. Application to other substrates........................49
Conclusion........................................................ 51
Experimental details....................................... 53
APPENDICES..................................................... 57
REFERENCES.......................................................... 65
ABSTRACT IN KOREA............................................... 67
ACKNOWLEDGEMENT..................................... 68Maste