17 research outputs found
์ ๊ธฐ์ฅ๋์ ๋ฐฐ์ถ ๊ธธ์ด ์ฑ์ฅ ๊ณผ์ ์ ์์ด์ HOS1์ ํตํ phytochrome B ๊ธฐ๋ฅ ์กฐ์ ์ ๋ํ ๋ถ์์ ๋ฉ์ปค๋์ฆ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (์์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ์์ฐ๊ณผํ๋ํ ํํ๋ถ, 2021. 2. ๋ฐ์ถฉ๋ชจ.During seedling development, response to light induces inhibition of hypocotyl elongation, cotyledon opening, and leaf greening, and those are called photomorphogenesis. For hypocotyl elongation, photoreceptors, especially one of the red/far-red light-sensing phytochromes, phytochrome B, is regarded as a crucial regulator of it.
Although, it is not completely known how the phytochrome B regulates hypocotyl growth. Here, I showed that well known E3 ubiquitin ligase, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1, prevents the transcriptional activation activity of PHYTOCHROME INTERACTING FACTOR 4 which induces hypocotyl cell growth. Also, photoactivated phyB is needed for activation of HOS1 in inhibiting PIF4 activity. Consequently, I found a new molecular mechanism for the phyB-dependent prohibition of hypocotyl growth in Arabidopsis.INTRODUCTION 1
MATERIALS AND METHODS 3
Plant materials and growth conditions. 3
Measurement of growth kinetics 3
Analysis of gene transcript levels 3
Yeast two hybrid assays. 4
BiFC assay. 4
ChIP assay. 4
Transcriptional activation activity assays. 5
Coimmunoprecipitation assay. 5
Cell fractionation assay. 6
RESULTS 8
HOS1 is associated with PIF4 function during hypocotyl elongation 8
HOS1 inhibits the transcriptional activation activity of PIF4 12
HOS1 is required for the phyB-mediated inhibition of PIF4 function 17
phyB activates HOS1 in inhibiting PIF4 activity 19
DISCUSSION 25
HOS1 is required for phyB-mediated inhibition of PIF4 activity 25
Requirement of additional factors for HOS1-mediated regulation of PIF4 26
How does phyB activates HOS1? 26
ACKNOWLEDGEMENT 28
REFERENCES 29
ABSTRACT IN KOREAN 34Maste
๋ด์ด ์คํ ์ธ๋ฆฌ์ค๊ฐ์์ ๊ณ ์จ ์ฐํ ๊ฑฐ๋์ ๋ฏธ์น๋ ๋ฏธ์ธ์กฐ์ง ๋ฐ ์งํฉ์กฐ์ง์ ์ํฅ ๊ณ ์ฐฐ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ฌ๋ฃ๊ณตํ๋ถ, 2015. 8. ์ด๊ฒฝ์ฐ.์๋์ง ๋ถ์ผ์์ ํจ์จ์ ๋์ด๊ธฐ ์ํด ๊ณ ๋ฏผ๋๋ ์ฌ๋ฌ ๊ฐ์ง ์๋ ์ค ๊ฐ์ฅ ์ฝ๊ฒ ์ ๊ทผํ ์ ์๋ ๋ฐฉ๋ฒ์ผ๋ก๋ ์์คํ
์ ์๋ ์จ๋๋ฅผ ๋์์ผ๋ก์จ ์ฐ์ ๋๋ ๋ณํ ํจ์จ์ ๋์ด๋ ค๋ ์๋๋ฅผ ๋ค ์ ์๋ค.
์ ์ธ๊ณ์ ์ผ๋ก ๊ฐ์ฅ ๋ง์ ๋ฐ์ ๋์ ๊ฐ๊ณ ์๋ ํ๋ ฅ๋ฐ์ ์์๋ ์์ฆ๊ธฐ ์จ๋๋ฅผ 700 ยฐC ์ด์์ผ๋ก ์ฌ๋ฆผ์ผ๋ก์จ ๋ฐ์ ํจ์จ์ 48%๊น์ง ๋์ด ์ฌ๋ฆฌ๋ ์ฐจ์ธ๋ ํ๋ ฅ๋ฐ์ ์์ธ ์ด์ด์๊ณ์ ํ๋ ฅ๋ฐ์ ์์ ๊ฐ๋ฐ์ด ์ด๋ฃจ์ด์ง๊ณ ์๋ค. ํ๋ ฅ๋ฐ์ ์์ ์ฌ์ฉ๋๋ ๋ณด์ผ๋ฌ๋ ๊ณผ์ด๊ธฐ/์ฌ์ด๊ธฐ, ์ ํ๊ธฐ ๋ฐ ์๋๋ฒฝ์ผ๋ก ๊ตฌ์ฑ๋์ด ์์ผ๋ฉฐ, ์ด๋ค์ ๋ง์ ํ์ดํ๋ก ๊ตฌ์ฑ๋์ด ์๋ค. ํ์ดํ๋ ๋ณด์ผ๋ฌ์ ์ฌ์ฉ๋๋ ์ค๋น์ ๊ฐ์ฅ ํต์ฌ์ด ๋๋ ๋ถํ์ผ๋ก ๋ด๋ถ์ ์ ์ฒด๊ฐ ํ๋ฅด๊ณ ์ธ๋ถ์์ ์ ๋ฌ๋๋ ์ด์ ๋ด๋ถ์ ์ ์ฒด์ ์ ๋ฌํ๋ ์ฃผ์ํ ์ญํ ์ ํ๋ฉฐ, ์ด๋ฌํ ํ์ดํ๋ ๋ณด์ผ๋ฌ๊ฐ ๋์ฉ๋ํ ๋์ด๊ฐ์ ๋ฐ๋ผ, ์ ์ฐจ ๋ง์ ์์ ํ์ดํ๊ฐ ๋ฐฐ์น๋๋ค. ๊ธฐ์กด ์ฐ๊ตฌ์ ์ํ๋ฉด ์ค์คํ
๋์ดํธ ์คํ
์ธ๋ฆฌ์ค ๊ฐ์ ๊ตฌ๋ฆฌ๋ฅผ ์ฒจ๊ฐํ๋ฉด ํฌ๋ฆฌํ ๊ฐ๋๊ฐ ์ฆ๊ฐํ๊ณ , ๊ณ ์จ ๋ด์์ฑ์ด ํฅ์๋๋ค๊ณ ๋ณด๊ณ ๋๊ณ ์๋ค. ์ด๋ฌํ ์ค์คํ
๋์ดํธ ์คํ
์ธ๋ฆฌ์ค ๊ฐ์ ์ฐ์ํ ๊ณ ์จ ํฌ๋ฆฌํ ํน์ฑ์ผ๋ก ์ฐจ์ธ๋ ํ๋ ฅ๋ฐ์ ์์ธ ์ด์ด์๊ณ์ ํ๋ ฅ๋ฐ์ ์์ ๊ณผ์ด๊ธฐ์ ์ฌ์ด๊ธฐ์์ ์คํ ํ์ดํ๋ก ๊ณ ๋ ค๋๊ณ ์๋ค. ํ์ง๋ง, ์ง๋ ๋ช ๋
๋์ ๊ณ ์จ์์ ๋ด์ด๊ฐ์ ์ฐํ์ธต ๋ถ์์ ๊ด๋ฒ์ํ๊ฒ ์ฐ๊ตฌ๋์์ผ๋ฉฐ, ์ด๋ ๊ทนํ ํ๊ฒฝ์์์ ๋ด์ด๊ฐ ํ๋ฉด์ ์ฐํ๋ฌผ์ ๋ฐ๋ฆฌ๋ก ์ธํ ์ฌ๋ฌ ๊ฐ์ง ๋ฌธ์ ๊ฐ ๋ฐ์ํ์๊ธฐ ๋๋ฌธ์ด๋ค.
์ธ๊ณ์ ์ธ ์๋์ง ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ฒญ์ ์ ์ฌ์ ์๋์ง์์ผ๋ก ๋ค์ํ ์ข
๋ฅ์ ์ฐ๋ฃ์ ์ง ์์คํ
์ค 800 ยฐC ๋ถ๊ทผ์์ ์๋ํ๋ ๊ณ ์ฒด์ฐ๋ฃ ์ฐํ๋ฌผ ์ฐ๋ฃ์ ์ง๊ฐ ๋์ ํจ์จ๊ณผ ํ๋ ฅ์ ์ธ ์ฐ๋ฃ ์ฌ์ฉ์ฑ์ผ๋ก ํฐ ๊ด์ฌ์ ๋ฐ๊ณ ์๋ค. ๊ณ ์ฒด ์ฐํ๋ฌผ ์ฐ๋ฃ์ ์ง ๋ถ๋ฆฌํ์ฉ ์ฌ๋ฃ๋ ๊ฐ๊ณต์ฑ๊ณผ ๊ฐ๊ฒฉ์ ์ด์ ๋ก ๊ธฐ์กด์ ์ธ๋ผ๋ฏน์ฌ๋ฃ์์ ๊ธ์์ฌ๋ฃ๋ก ๋น ๋ฅด๊ฒ ๋์ฒด๋๊ณ ์๋ค. ํ๋ผ์ดํธ๊ณ ์คํ
์ธ๋ฆฌ์ค ๊ฐ์ ์์ฑ๋๋ ์ฐํ๋ฌผ์ ๋์ ์ ๊ธฐ์ ๋๋ ๋ฟ ์๋๋ผ ์์ฌ ์์ฒด์ ๋ฐ์ด๋ ๊ธฐ๊ณ์ ํน์ฑ, ๊ฐ๊ณต์ฑ, ๊ฒฝ์ ์ฑ ๋ฐ ๋ค๋ฅธ ๊ณ ์ฒด์ฐ๋ฃ ์ฐํ๋ฌผ ์ฐ๋ฃ์ ์ง ๊ตฌ์ฑ์์์ ์ ์ฌํ ์ดํฝ์ฐฝ๊ณ์๋ก ์ธํด ๋ถ๋ฆฌํ์ฉ ์์ฌ๋ก ํฌ๊ฒ ๊ฐ๊ด๋ฐ๊ณ ์๋ค. ๊ณ ์ฒด์ฐ๋ฃ ์ฐํ๋ฌผ ์ฐ๋ฃ์ ์ง์ ์๋์จ๋๋ 650~800 ยฐC ์ด๋ฉฐ ์ด๋ฌํ ์จ๋์์ ์ฃผ์ ๊ด์ฌ์ฌ๋ ๋ด์ฐํ์ฑ๊ณผ ์ฐํ๋ฌผ์ ํ์ฑ์ผ๋ก ์ธํ ์ ๊ธฐ์ ๋๋์ด๋ค. ์ผ๋ฐ์ ์ผ๋ก ๋ด์ฐํ์ฑ ๊ฐ์ ์ ์ํด์๋ ํฐํ๋, ์๋ฃจ๋ฏธ๋๋ฑ์ ํฉ๊ธ์์๊ฐ ์ฒจ๊ฐ๋๋ฉฐ ํนํ ๋ง๊ฐ์ ํ๋ผ์ดํธ ์คํ
์ธ๋ฆฌ์ค ๊ฐ์์ ์์ฑ๋๋ ์ฐํ๋ฌผ์ธต์ ์ ๊ธฐ์ ๋๋๋ฅผ ์ฆ๊ฐ ์ํค๊ธฐ ์ํ ํฉ๊ธ์์๋ก ์ฌ์ฉ๋๊ณ ์๋ค.
์ด์ ๊ฐ์ ๊ณ ์จ ์๋ ์กฐ๊ฑด์์ ๊ฐ์ฅ ๋ฌธ์ ๊ฐ ๋๋ ๋ถ๋ถ์ ์ฌ๋ฃ์ ๊ณ ์จ ์์ ์ฑ ๋ฌธ์ ๋ก, ํนํ ๊ณ ์จ ์ฐํ์ ์ํ ์ฌ๋ฃ์ ์ดํ๋ฅผ ๊ทน๋ณตํ๋ ๊ฒ์ด ๊ฐ์ฅ ์ค์ํ ์ด์ ์ค ํ๋์ด๋ค. ์ด๋ฌํ ๊ณ ์จ ์ฐํ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๊ธฐ ์ํ ๋ฐฉ๋ฒ์ผ๋ก๋ ๋ค์ํ ํฉ๊ธ์์๋ฅผ ์ฒจ๊ฐํจ์ผ๋ก์จ ์ฌ๋ฃ๋ด์ ํ์ฐ์ ์ ์ดํ๋ ค๋ ์ ๊ทผ์ด ์ฃผ๋ก ์ด๋ฃจ์ด์ง๊ณ ์๋๋ฐ, ์ต๊ทผ ๊ฐ๊ฒฉ ์ ๊ฐ ๋ฌธ์ ์ ์ฌ๋ฃ์ ์ฌํ์ฉ ๊ฐ๋ฅ์ฑ ์ ํ ๋ฌธ์ ๋ก ์ธํ์ฌ ํฉ๊ธ ์์์ ์ฒจ๊ฐ๋ฅผ ์ค์ด๋ฉด์ ๊ธฐ์กด ์ฌ๋ฃ ์ด์์ ๋ฌผ์ฑ์ ์ป๊ณ ์ ํ๋ ์๋๊ฐ ์กฐ๊ธ์ฉ ์ฆ๊ฐํ๊ณ ์๋ค.
๋ณธ ๋
ผ๋ฌธ์์๋ ๊ธฐ์กด์ ์์ฌ์ ๊ฐ์ ์์ฌ๋ฅผ ์ด์ฉํ๋ฉด์๋ ์ฌ๋ฃ์ ๊ฒฐ์ ๋ฆฝ๊ณ ํน์ฑ ๋๋ ์ฐ์ ๊ฒฐ์ ๋ฐฉ์๋ฅผ ์ ์ดํจ์ผ๋ก์จ ์ฌ๋ฃ์ ๊ณ ์จ ๋ด์ฐํ์ฑ์ ๊ฐ์ ํ ์ ์๋ ๋ฐฉ์์ ์๊ฐํ๊ณ ์ ํ๋ค.
์ฌ๋ฃ์ ์ด๋ฐฉ์ฑ์ด ์ ์ ์ค์คํ
๋์ดํธ๊ณ ์คํ
์ธ๋ฆฌ์ค ์์ฌ์์๋ ์ฌ๋ฃ์ ๊ฒฐ์ ๋ฐฉ์๋ณด๋ค๋ ๊ฒฐ์ ๋ฆฝ๊ณ๊ฐ ๋ด์ฐํ์ฑ์ ํฐ ์ํฅ์ ๋ฏธ์น๋๋ฐ, ์๋์ง์ ์ผ๋ก ์์ ์ ์ธ ฮฃ3 ์
๊ณ ๋ฑ ํน์ ๊ฒฐ์ ๋ฆฝ๊ณ์์๋ ๋ด์ฐํ์ฑ์ ๋ํ๋ด์ง ๋ชปํ์ง๋ง, 15ยฐ ์ด์์ ์ด๊ธ๋จ๊ฐ์ ๊ฐ๋ ๊ณ ๊ฒฝ๊ฐ์
๊ณ ์ฃผ์์์๋ ๋ฐ์ด๋ ๋ด์ฐํ์ฑ์ ๋ํ๋ด๊ณ ์์ผ๋ฉฐ, ๊ฒฐ์ ๋ฆฝ์ ํฌ๊ธฐ๋ฅผ ์ ์ดํ๋ ๊ฒ ๋ง์ผ๋ก๋ 50๋ฐฐ ์ด์์ ์ฐํ์๋ ์ฐจ์ด๋ฅผ ๋ํ๋ผ ์ ์๋ค. ๋ฐ๋ผ์ ๊ฒฐ์ ๋ฆฝ์ ๋ฏธ์ธํ ์ํด์ผ๋ก์จ ๋ด์ฐํ์ฑ์ ์ฆ๊ฐ ์ํฌ ์ ์์ผ๋ฉฐ, ๊ฒฐ์ ๋ฆฝ๊ณ๋ฅผ ๋ฐ๋ผ ์ ํ์ ์ฐํ๋ก ์ธํ์ฌ ์๊ณ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ๋ฅผ ํ์ธ ํ์๋ค.
์ด์ ๋ฐํด ์ฌ๋ฃ์ ์ด๋ฐฉ์ฑ์ด ํฐ ํ๋ผ์ดํธ๊ณ ์คํ
์ธ๋ฆฌ์ค ์์ฌ์์๋ ๊ฒฐ์ ๋ฐฉ์๊ฐ ๋ ํฐ ์ํฅ์ ๋ํ๋ด๋๋ฐ, ๋ชจ์ฌ์ ๊ฒฐ์ ํ์ ๋ฐฉ์์ ๋ด์ฐํ์ฑ, ์ ๊ธฐ์ ๋๋์ ๊ด๊ณ๋ฅผ ์ดํดํ๊ธฐ ์ํด {100}, {110}, {111}๊ณผ {112} ๋ฐฉ์์ ๊ฒฐ์ ๋ฆฝ์ ํ์ฑ๋ ์ฐํ๋ฌผ์ ๊ตฌ์กฐ๋ฅผ ๋ถ์ํ์๋ค. ์ถฉ์ง๋๊ฐ ๋์ {110} ๊ฒฐ์ ๋ฉด์์๋ ์์ฑ๋๋ ์ฐํ๋ฌผ์ด ํ์ ํํ๋ฅผ ๊ฐ๋ ๊ณ ๋ฐ๋์ ์ฐํ๋ฌผ์ด ํ์ฑ๋๋ ๊ฒ์ ํ์ธ ํ ์ ์์ผ๋ฉฐ, ์ถฉ์ง๋๊ฐ ๋ฎ์ {111} ๊ฒฐ์ ๋ฉด์์๋ ์ฐํ๋ฌผ์ ํ์์ด ์
์ ํํ๋ฅผ ๋ํ๋ด๊ณ ๋ฐ๋๋ ๋น๊ต์ ๋ฎ๊ฒ ๋ํ๋๋ ๊ฒ์ ์ ์ ์์๋ค. ๋ฐ๋ผ์ ๋ชจ์ฌ์ {110} ๊ฒฐ์ ๋ฉด์์ ๋ด์ฐํ์ฑ๊ณผ ์ ๊ธฐ์ ๋๋๊ฐ ๋ค๋ฅธ ๊ฒฐ์ ๋ฉด์ ๋นํด ์ฐ์ํ๊ฒ ๋ํ๋ฌ์ผ๋ฉฐ, ์ด๋ฅผ ๋ฐํ์ผ๋ก ๊ฒฐ์ ๋ฐฉ์ ๋ถํฌ์ ๊ฐ๋์ ๋ฐ๋ฅธ ๋ด์ฐํ์ฑ๊ณผ ์ ๊ธฐ์ ๋๋์ ํน์ฑ์ ๋ณํ๋ฅผ ํ์ธ ํ์๋ค.Despite enormous research efforts into the renewable energy technologies, conventional thermal power plants are still by far the most important power generation source worldwidethermal power plants are expected to maintain this position for at least several decades. All power generation sources based on the fossil fuel burning inevitably produce CO2, one of the major causes of global warming. Considering the contribution to the total CO2 emission, improving fossil fuel-based energy conversion efficiency to 60% by increasing the reaction temperature is the most efficient way to reduce total CO2 emissions by up to 30%.
Generally, the austenitic steels demonstrate excellent high temperature creep properties, making them a promising candidate for use in steam tubes for superheaters and reheaters of ultra-super-critical (USC) power plants. Previous studies have shown that adding Cu to austenitic stainless steels increases the creep rupture strength and enhances high temperature corrosion resistance. To examine the oxidation behavior of Cu added austenitic stainless steels in a water vapor atmosphere, we observed the oxidation behavior at 700 ยฐC in air with 20
% water vapor. Samples were prepared by thermo-mechanical treatment to have similar โ3 grain boundary fraction and different grain size, to eliminate the grain boundary characteristics effect.
The early stages (< 12 h) of the oxidation behavior of Cu added austenitic stainless steels with various grain sizes was investigated using atom probe tomography (APT), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), electron probe microanalyzer (EPMA) and X-ray diffraction (XRD). A thin Cr-rich oxide layer is formed over the entire surface of a small grain (8 ยตm) sample, which is similar to that formed near grain boundaries of medium grain (17 ยตm) and large grain (27 ยตm) samples. Oxidation of all samples proceeds via the lattice and grain boundary diffusion of Cr, leading to the formation of a protective Cr-rich oxide first at the grain boundaries and then via lateral growth toward the grain interiors. APT and TEM studies on the initial stage of oxidation clearly reveal that within 4 ฮผm of the grain boundaries, the oxide layer exhibits a duplex-layer structure consisting of a thin Fe-rich (Fe,Cr)3O4 oxide (~55 nm) above and a protective Cr2O3 oxide (~40 nm) below as a diffusion barrier. In contrast, further away from the grain boundaries, a non-protective Fe-rich (Fe,Cr)3O4 oxide (~160 nm) and a Cr-rich (Fe,Cr)3O4 oxide (~40 nm) are formed as the outer and inner layers, respectively. The oxidation kinetics was studied in terms of mass gain measurements. The critical grain size (< 8 ยตm) to prevent the formation of fast-growing, non-protective Fe-rich oxides is discussed based on the experimental findings. Through the calculation and experimental analysis, a critical grain size for the high oxidation resistance is suggested.
During the later stages (< 500 h) of the oxidation of Cu added austenitic stainless steels with grain size smaller than 8 ยตm, uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas in samples with grain size larger than 17 ยตm, Fe2O3 layer was formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. It can be inferred that the grain boundaries act as rapid diffusion paths for Cr and provide Cr enough to form Cr2O3 oxide at the area near to the grain boundary.
Also, the oxide scales of high-alloyed steel are composed of complex phases that are difficult to differentiate. Here, we used electron backscatter diffraction (EBSD)-electron dispersive spectroscopy (EDS) simultaneous analysis technique to analyze the complex oxide layers formed on Cu added austenitic stainless steels. Multi-layered oxide scales composed of external Fe2O3, external Fe3O4, internal FeCr2O4, and internal Cr2O3 oxide were well distinguished. The addition of Cu to the austenitic stainless steel induced spinel structured oxide formation at the top surface of the external oxide.
We have studied the phase transformation behavior of the austenite (ฮณ) to ferrite (ฮฑ) in Cu added austenite stainless steel after oxidation at 700 ยฐC in air with 20% water vapor. Identification and observation of the phase transformation have been carried out on this steel by means of SEM, XRD, TEM and APT with Thermo-Calc program, respectively. The results of SEM, XRD and TEM reveal that ฮฑ-BCC phase formed along the prior ฮณ-FCC grain boundary after oxidation. According to the APT result, Fe and Ni are strongly concentrated and Cr is depleted in ฮฑ-BCC phase.
Oxidation behavior of ferritic stainless steels with 22 wt.% Cr was also investigated. The ferritic stainless steels have been preferred as a material for interconnects in solid oxide fuel cells (SOFC) because of their high electrical and thermal conductivity, good mechanical properties, good formability, cost effective and similar thermal expansion coefficient (TEC) to the other cell components. The SOFCs usually operate in the temperature in an intermediate range of 650~800 ยฐC.
The aim of this part is the study of the effect of crystallographic orientation on the high temperature oxidation behavior of ferritic stainless steels including Crofer 22 APU. Crofer 22 APU, specially developed for SOFC interconnect, was tested in an air atmosphere at 800 ยฐC. To gain a better understanding of the relation between oxidation resistance and electrical conductivity, the oxide scales formed on surface was analyzed in terms of orientation, structure, composition and phase in the {100}, {110}, {111} and {112} substrate planes. Also, a nano-indenter with nanoscale electrical contact resistance (nano ECR) measurements has been used to study the changes in contact resistance during an oxidation. Oxide thickness and electrical contact resistance results showed that the surface orientation can have an effect on the oxidation resistance and electrical conductivity.Contents
Abstract I
Contents VI
List of Tables XIII
List of Figures XIV
Chapter 1 Literature Review of High Temperature Oxidation 1
1.1 General mechanism of oxidation 1
1.1.1 Principles of oxidation 1
1.1.2 The initiation of oxidation 3
1.1.3 Transport mechanisms 5
1.1.4 Rate of oxidation 7
1.1.5 Oxidation of alloys 14
1.1.6 Alloy depletion 18
1.2 Oxidation in water vapor and steam 19
1.2.1 Water vapor and steam oxidation mechanisms 21
1.2.1.1 The dissociation mechanism 22
1.2.1.2 Oxidant-gas penetration mechanism 26
1.2.1.3 Formation and volatilization of Fe(OH)2 27
1.2.1.4 Formation and volatilization of CrO2(OH)2 29
1.2.1.5 Changes in the oxide defect structure via proton dissolution 30
1.2.2 Steam oxidation as a function of steel composition and alloy type 32
1.3 Stainless steel 33
1.3.1 Properties 33
1.3.2 Classification 34
1.3.2.1 Austenitic stainless steels 35
1.3.2.2 Ferritic stainless steels 37
Chapter 2 Characterization Techniques for Oxidation Analysis 39
2.1 Scanning electron microscope 39
2.2 Energy dispersive X-ray spectroscopy 42
2.3 Electron backscattered diffraction 44
2.3.1 Fundamentals of the electron backscattered diffraction 44
2.3.2 EBSD sample preparation (mechanical polishing) 50
2.4 X-ray diffraction 52
2.5 Focused ion beam 56
2.5.1 Fundamentals of the focused ion beam 56
2.5.2 FIB milling 59
2.5.3 FIB deposition 61
2.6 Transmission electron microscopy 63
2.6.1 Fundamentals of the transmission electron microscopy 63
2.6.2 Bright field/Dark field imaging 66
2.6.3 Selected area diffraction (SAD) 68
2.7 Atom Probe Tomography 71
2.7.1 Fundamentals of the atom probe tomography 71
2.7.2 APT sample preparation 79
Chapter 3 Effect of Grain Size on the Oxidation Resistance 82
3.1 Introduction 82
3.2 Experimental 85
3.2.1 Alloy processing 85
3.2.2 High temperature oxidation experiments 88
3.2.3 Initial (~30 min) oxidation stage analysis 90
3.2.3.1 Atom probe tomography and Transmission electron microscopy 90
3.2.4 Early (~12 h) and long term (~500 h) oxidation stage analysis 93
3.2.4.1 Scanning electron microscopy, electron backscattered diffraction and electron probe microanalysis 93
3.2.4.2 X-ray diffraction 94
3.3 Results 95
3.3.1 Initial oxidation (~30 min) stage 95
3.3.1.1 Initial stage of oxidation behavior of Cu added austenitic stainless steel 95
3.3.1.2 Oxide composition analysis using atom probe tomography 98
3.3.1.3 Oxide structure analysis using TEM 111
3.3.2 Early oxidation (~12 h) stage 114
3.3.2.1 Grain size & CSLBs analysis using EBSD 114
3.3.2.2 Mass gain analysis for the study of oxidation kinetics 116
3.3.2.3 Oxide Surface morphology analysis using SEM 121
3.3.2.4 Oxide phase analysis using EBSD 124
3.3.3 Long term oxidation (~500 h) stage 126
3.3.3.1 Phase analysis using X-ray diffraction 126
3.3.3.2 Surface and cross section of oxide composition analysis using EDS 130
3.4 Discussion 135
3.4.1 Initial oxidation (~30 min) stage 135
3.4.1.1 Oxidation of surface and grain boundary regions 135
3.4.1.2 Initial oxidation mechanism 140
3.4.2 Early (~12 h) & long term (~500 h) stage oxidation 144
3.4.2.1 Grain refinement effect 144
3.4.2.2 Critical grain size 147
3.5 Summary 152
Chapter 4 Effect of Alloy element on the structure of oxide layer 153
4.1 Introduction 153
4.2 Experimental 156
4.2.1 Sample information and preparation 156
4.2.2 EBSD-EDS simultaneous analysis 157
4.3 Results and Discussion 158
4.3.1 Oxide phase of Cu added austenitic stainless steels 158
4.3.2 Oxide composition analysis using EDS 161
4.3.3 Oxide phase and orientation analysis using EBSD-EDS simultaneous 163
4.3.4 The formation of Fe3O4 and Cu containing spinel oxide at the top surface 166
4.4 Summary 171
Chapter 5 Effect of Water Vapor on the Abnormal BCC Phase Transformations 172
5.1 Introduction 172
5.2 Experimental 175
5.2.1 Alloy synthesis 175
5.2.2 X-ray diffraction, Scanning electron microscopy and electron probe microanalysis 177
5.2.3 Transmission electron microscopy and Atom probe tomography 178
5.3 Results and Discussion 181
5.3.1 Phase identification of matrix and oxide using XRD 181
5.3.2 Cross-sectional morphology analysis using SEM 183
5.3.3 Structure analysis using TEM 185
5.3.4 Chemical composition analysis using APT 188
5.4 Summary 193
Chapter 6 Effect of Substrate Grain Orientation on the Oxidation Resistance and Electrical Conductivity 194
6.1 Introduction 194
6.2 Experimental 196
6.3 Results 200
6.3.1 Grain size and surface morphology of initial oxidation 200
6.3.2 Phase analysis using X-ray diffraction 203
6.3.3 Oxide thickness analysis for the study of oxidation kinetics 205
6.3.4 Oxide orientation analysis by using EBSD 208
6.3.5 Electrical contact resistance of oxide layer analysis by using ECR 210
6.4 Discussion 216
6.4.1 Orientation relationship between matrix and oxides 216
6.4.2 Contact resistance of oxides 218
6.5 Summary 221
Chapter 7 Conclusions 222
7.1 Cu added austenitic stainless steels (Super304H) 222
7.2 22 wt.% Cr ferritic stainless steels (Crofer 22 APU) 225
Bibliography 226
๊ตญ๋ฌธ ์ด๋ก 248
Curriculum Vitae 252
Education & Research Experience 252
Awards & Grants 253
Skills and Expertise 253
Journal Publications 254
Patents 256
Conference (International) 257Docto