90 research outputs found
νν©ν΄κΆ μμ μ§μ μ°κ³λ§ ꡬμΆμ μ λ΅κ³Ό λ°©μ(Strategies and measures for building a localized network of free zones in the Yellow Sea sub-region)
λ
ΈνΈ : μ΄ μ°κ΅¬λ³΄κ³ μμ λ΄μ©μ κ΅ν μ°κ΅¬μμ μ체 μ°κ΅¬λ¬Όλ‘μ μ λΆμ μ μ±
μ΄λ 견ν΄μλ μκ΄μμ΅λλ€
νν©ν΄κΆ μ£Όμ νλ§λμκ° μ°κ³λ§ ꡬμΆμ λ΅(Inter-city networking strategy in the Yellow Sea sub-region)
λ
ΈνΈ : μ΄ μ±
μ κ΅ν μ°κ΅¬μμ μ체 μ°κ΅¬λ¬Όλ‘μ μ λΆμ μ μ±
μ΄λ 견ν΄μλ μκ΄μμμ λ°νλ‘λλ€
λλ Έμ€μΌμΌμμμ νλ©΄ν¨κ³Όμ κ³λ©΄ν¨κ³Όλ₯Ό κ³ λ €ν λ°λ§μ μ°μ체 λͺ¨λΈλ§
Due to the evolution of fabrication technology of semiconductor, a lot of micro electro-mechanical systems have been developed and have been used in daily life. Nowadays, not only micro-scale devices but also lots of nano-scale devices, such as a bio sensor and a nano resonator, have been developed. Because surface-to-volume ratio becomes very high in nano-scaled devices, surface effect makes a great effect on mechanical properties and behaviors of nano structures. The one of representative examples of surface effect is equilibrium strain of nanofilm and nanowire in relaxed state. Because the magnitude of equilibrium strain might exceed the linear elastic assumption in a thin nanofilm with a few nanometer thickness, hyperelastic material properties should be considered in nano-scale devices according to equilibrium strain. Besides this surface effect, interface effect plays an important role in equilibrium configuration and mechanical behavior in multi-layered nano structures.
In this dissertation, continuum-based multiscale modeling for multi-layered nanostructures is proposed. This proposed model includes surface effect and interface effect which are calculated by atomistic simulations. In order to design and analyze multi-layer thin film using nonlinear finite element method, four modeling techniques are proposed. First, surface relaxation model for FCC crystal structure is proposed to calculate surface parameters which are required to describe surface effect on continuum modeling. In this section, the equilibrium strain in nanofilm is evaluated using calculated surface properties and the analytical solution for size-dependent elasticity is also provided using proposed surface relaxation model. Second, continuum-based multiscale model including anisotropic surface effect is proposed. In this model, linear surface elasticity model is utilized to describe surface constitutive relation. The proposed multiscale model describes the size-dependent elasticity due to surface effect very well and it is also reported that the hyperelastic effect of bulk region as well as surface effect should be considered in nanofilm. Third, Hyperelastic model for transition metal and silicon materials is proposed. A strain energy function is used to represent hyperelastic relations and is composed of polynomial based function with nine strain invariants. The hyperelastic material constants are evaluated by least square method using the results of atomistic calculation. The proposed hyperelastic model can be embedded in finite element method much easier than Cauchy-Born rule. Finally, interface model for a covalent bond is provided for multi-layered nano structures. Using this model, the equilibrium configuration of Si/SiGe bilayer nanosprings is characterized by strip orientation and width-to-thickness ratio.
Although the proposed continuum-based multiscale model including surface and interface effects and hyperelastic model are far more efficient than atomistic calculations in designing nano structures, they give comparable results to Cauchy-Born rule and atomistic simulations. These continuum-based approaches will be very useful and promising designing tools for nano-scaled structures composed of nanofilms.λ°λ체 μ μ κΈ°μ μ λ°μ μΌλ‘ νμ¬κΉμ§ λ§μ λ§μ΄ν¬λ‘ μ€μΌμΌμ μ κΈ°κΈ°κ³μ μΈ μ₯μΉ(MEMS)λ€μ΄ κ°λ°λμ΄ μ¬μ©λκ³ μλ€. μ΅κ·Όμλ λ§μ΄ν¬λ‘ μ€μΌμΌλΏλ§ μλλΌ λ°μ΄μ€μΌμμ λλ
Έκ³΅μ§κΈ°μ κ°μ λ§μ λλ
Έ μ€μΌμΌμ μ₯μΉλ€μ΄ κ°λ°λκ³ μλ€. λλ
Έ μ€μΌμΌμ μ₯μΉμμλ νλ©΄λλΆνΌλΉ(surface-to-volume ratio)κ° λ§€μ° ν¬κΈ° λλ¬Έμ νλ©΄ν¨κ³Όκ° λλ
Έκ΅¬μ‘°λ¬Όμ κΈ°κ³μ νΉμ±κ³Ό κ±°λμ λ§€μ° ν° μν₯μ λ―ΈμΉκ² λλ€. νλ©΄ν¨κ³Όμ λνμ μΈ μλ‘ μ΄μμν(relaxed state)μμμ λλ
Έλ°λ§κ³Ό λλ
Έμμ΄μ΄μ νν λ³νμ¨(equilibrium strain)μ΄ μλ€. λλ
Έλ°λ§μ νλ©΄μ μμ©νλ νλ©΄μλ ₯μ μνμ¬ ννμνλ₯Ό μ΄λ£¨κΈ° μν΄ λ©΄λ΄ λ°©ν₯μΌλ‘μ λ³νμ΄ λ°μνκ² λλ€. λλ
Έμμ΄μ΄μ κ²½μ°λ κΈΈμ΄λ°©ν₯μΌλ‘ λ³νμ΄ μΌμ΄λλ€. μ΄λ λ°μνλ λ³νμ¨μ νν λ³νμ¨μ΄λΌκ³ νλ€. μ΄λ¬ν νν λ³νμ¨μ ν¬κΈ°λ μ λλ
Έλ―Έν° λκ»μ λλ
Έλ°λ§μμλ μ ν νμ± μμμ λ²μ΄λλ―λ‘, λλ
Έμ€μΌμΌμ μ₯μΉμ ν΄μμλ νν λ³νμ¨μ λ°λ₯Έ λΉμ ν νμ± ν¨κ³Όκ° κ³ λ €λμ΄μΌ νλ€. μ΄λ¬ν νλ©΄ν¨κ³Ό μ΄μΈμλ κ³λ©΄μμ λ°μνλ κ³λ©΄ν¨κ³Όλ λ€μ€λ°λ§ λλ
Έ ꡬ쑰물μ νμκ³Ό κΈ°κ³μ κ±°λμ λ§€μ° μ€μν μν μ λ΄λΉνλ€.
λ³Έ λ
Όλ¬Έμμλ λ€μ€λ°λ§ λλ
Έκ΅¬μ‘°λ¬Όμ ν΄μμ μν μ°μ체 κΈ°λ°μ λ©ν°μ€μΌμΌ λͺ¨λΈλ§ κΈ°λ²λ€μ μ μνλ€. λ³Έ λ
Όλ¬Έμμ μ μνλ λ©ν°μ€μΌμΌ λͺ¨λΈμ μμμμ€μ κ³μ°μ ν΅νμ¬ κ³μ°λλ λ¬Όμ±λ€μ μ΄μ©ν νλ©΄ν¨κ³Όμ κ³λ©΄ν¨κ³Όλ₯Ό ν¬ν¨νλ€. λ€μ€λ°λ§μ λΉμ ν μ νμμ ν΄μμ μν΄ λ³Έ λ
Όλ¬Έμμλ λ€ κ°μ λͺ¨λΈλ§ κΈ°λ²μ΄ μ μλλ€. 첫 λΆλΆμμλ μ°μ체μ νλ©΄ν¨κ³Όλ₯Ό λνλ΄κΈ° μν΄ νμν νλ©΄ λ¬Όμ±μ κ³μ°νκΈ° μν΄ νλ©΄ μ΄μ λͺ¨λΈ(surface relaxation model)μ΄ μ μλλ€. μ΄ λΆλΆμμλ κ³μ°λ νλ©΄ λ¬Όμ±μ μ΄μ©νμ¬ νν λ³νμ¨(equilibrium strain)κ³Ό ν¬κΈ°μ μμ‘΄μ μΈ νμ±(size-dependent elasticity)μ κ³μ°λλ€. λ λ²μ§Έ λΆλΆμμλ λΉλ±λ°©μ± νλ©΄ν¨κ³Όλ₯Ό κ³ λ €ν μ°μ체 κΈ°λ°μ λ©ν°μ€μΌμΌ λͺ¨λΈμ΄ μ μλλ€. μ΄ λͺ¨λΈμμλ νλ©΄μ ꡬμ±λ°©μ μμΌλ‘ μ ν νμ± λͺ¨λΈμ΄ μ¬μ©λλ€. μ μλ λ©ν°μ€μΌμΌ λͺ¨λΈμ μ΄μ©νμ¬ ν¬κΈ°μ μμ‘΄μ μΈ νμ±μ κ³μ°μ΄ κ°λ₯νλ©°, μ΄ κ²°κ³Όλ μμμ κ³μ°μ μν΄ κ³μ°λ ν΄μν΄μ λ§€μ° μ μΌμΉνλ€. λν, μ΄ λͺ¨λΈμ ν¬κΈ°μ μμ‘΄μ μΈ νμ±μ κ³μ°μ μμ΄μ νλ©΄ν¨κ³ΌλΏλ§ μλλΌ λ²ν¬ μμμ λΉμ ν λ¬Όμ±μ΄ μ€μν μν₯μ λ―ΈμΉκ³ μμμ 보μ¬μ€λ€. μΈ λ²μ§Έ λΆλΆμμλ μ²μ΄ κΈμμ λν λΉμ ν νμ±λͺ¨λΈμ΄ μ μλλ€. λ³νμ¨ μλμ§ ν¨μ(strain energy density function)κ° λΉμ ν νμ± κ±°λμ λ¬μ¬νκΈ° μν΄ μ¬μ©λλ©°, μ΄ ν¨μλ 9κ°μ λ³νμ¨ λΆλ³λ(strain invariant)μΌλ‘ νμλλ λ€νμμ νμμΌλ‘ ꡬμ±λλ€. λΉμ ν νμ± κ³μλ€μ μμμμ€μ μ μ°λͺ¨μ¬μ κ²°κ³Όλ₯Ό μ΄μ©νμ¬ μ΅μμμΉλ²μΌλ‘ κ³μ°λλ€. μ΄ λΉμ ν νμ± λͺ¨λΈμ Cauchy-Born λ²μΉμ μν μμμ κ³μ°λ³΄λ€ λ¨μνκΈ° λλ¬Έμ λ μ½κ² μ νμμ ν΄μμ μ μ©μ΄ κ°λ₯νλ€. λ§μ§λ§μΌλ‘ λ€μ€λ°λ§ λλ
Έκ΅¬μ‘°λ¬Όμ ν΄μμ μν 곡μ κ²°ν©μ κ°μ§λ κ³λ©΄μ λν λͺ¨λΈλ§ κΈ°λ²μ΄ μ μλλ€. μ΄ λͺ¨λΈμ μ΄μ©νμ¬ λ°©ν₯ λ° νκ³Ό λκ»λΉμ μν Si/SiGe λλ
Έμ€νλ§μ νμ λ³νμ λ ν μ°κ΅¬κ° μνλλ©°, κ³λ©΄ ν¨κ³ΌλΏλ§ μλλΌ λΉλμΉμ νλ©΄ λ¬Όμ±μ κ°μ§λ λ€μ΄μλͺ¬λ ꡬ쑰μ νλ©΄ν¨κ³Όλ₯Ό κ³ λ €ν ν΄μ κΈ°λ²λ ν¨κ» μ μλλ€.
λ³Έ λ
Όλ¬Έμμ μ μνλ λΉμ ν νμ± λͺ¨λΈκ³Ό νλ©΄ν¨κ³Όμ κ³λ©΄ν¨κ³Όλ₯Ό κ³ λ €ν μ°μ체 κΈ°λ°μ λ©ν°μ€μΌμΌ λͺ¨λΈλ§ κΈ°λ²λ€μ μμμ κ³μ°λ°©λ²μ λΉν΄ ν¨μ¬ λ λΉ λ₯΄κ³ κ°νΈνκ² κ³μ°μ΄ κ°λ₯ν λ°©λ²λ€μ΄λ©΄μλ Cauchy-Born κΈ°λ²κ³Ό μμμ κ³μ°μ νμ νλ κ³μ° κ²°κ³Όλ€μ 보μ¬μ€λ€. λ³Έ λ
Όλ¬Έμμ μ μν μ°μ체 κΈ°λ°μ κΈ°λ²λ€μ λλ
Έλ°λ§μΌλ‘ ꡬμ±λλ λλ
Έκ΅¬μ‘°λ¬Όμ ν΄μμ λ§€μ° μ μ©νκ³ μ λ§μ΄ μλ ν΄μ λꡬλ€μ΄ λ κ²μ΄λ€.Docto
ν¬κΈ°μ’ λͺ© μ μμ μ μ λ ₯ κ°λ ꡬ쑰 νμ λ° μΈ‘μ λꡬ κ°λ°
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :체μ‘κ΅μ‘κ³Ό,2001.Docto
λλΆμ νλμ μ§μκ°λ°μ μ¬λ‘λΆμκ³Ό μ΄λ‘ λͺ¨μ(Case studies and theoretical explorations of callaborative regional development in Northeast Asia)
λ
ΈνΈ : μ΄ μ°κ΅¬λ³΄κ³ μμ λ΄μ©μ κ΅ν μ°κ΅¬μμ μ체 μ°κ΅¬λ¬Όλ‘μ μ λΆμ μ μ±
μ΄λ 견ν΄μλ μκ΄μμ΅λλ€
Clinical significance of classification of graves` disease according to the characteristics of TSH receptor antibodies
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :μνκ³Ό λ΄κ³Όνμ 곡,1998.Docto
ν΅μΌ νλ°λ λΉμ κ³Ό κ΅ν μ λ΅
λ
ΈνΈ : λ³Έ κ°νλ¬Όμ κ΅ν μ°κ΅¬μμμ 2015λ
1μμ λ°νν [ν΅μΌμλμ κ΅ν μ μ±
λ°©ν₯] νΉμ§μ μ 1λΆμ
λλ€
- β¦