2 research outputs found

    Streptomyces coelicolorμ—μ„œ κ³Όμ‚°ν™”μˆ˜μ†Œμ— μ˜ν•œ μœ μ „μž λ°œν˜„ 쑰절

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ 생λͺ…κ³Όν•™λΆ€,2020. 2. μ•ˆκ΄‘μ„.Streptomyces coelicolor A3(2) is a gram Positive bacteria, and have complex life cycle. This bacterium has relatively large genome (8.7 Mbp) and high GC contents. Also, it has a number of transcriptional regulators including 65 sigma factors. In this study, genes encoding catalase response regulator (CatR), and oxidative stress response transcriptional regulator (OxyR) were investigated in a view of their regulation and roles. The bacteria to have both peroxide response regulator (CatR and OxyR) is extremely rare. Except for Neisseria gonorrhoeae, Streptomycetes is only genus CatR and OxyR simultaneously in the same genome. In addition, the regulon of CatR and OxyR is common genes in E. coli or B. subtilis. To discriminate the roles of each regulator in S. coelicolor, we performed genome wide transcriptome analysis (RNA-seq). With transcriptome analysis, we defined the 190 upregulated genes and 83 downregulated genes in response to oxidative stress (hydrogen peroxide), 121 upregulated and 118 downregulated genes in Ξ”catR strain. Also 57 genes upregulated and 2 downregulated dependents to OxyR were found. Analyzing the expression pattern, we could divide three different categories of genes. The first cluster is CatR dependent genes which upregulated in response to hydrogen peroxide. A function of the category enriches to oxidative stress detoxification and membrane protein synthesis. The second cluster enriched by OxyR dependent genes which upregulated in response to oxidative stress. The enriched roles of these genes were DNA repair system and oxidative response functions. Last category is mixed with OxyR and CatR dependent together. Also, we found conserved palindromic sequences. Among hydrogen peroxide repressed genes in wild type, we found 23 genes have conserved palindromic sequences upstream regulatory region of each gene. These genes were related to iron assimilation function in GO analysis, so we investigated in iron related regulation in S. coelciolor. It was reported Iron responsive regulator, DmdR directly binds to this palindromic sequences. Previously, just 10 genes were reported as DmdR regulon, I found 13 more genes which could be regulated by DmdR. PerR/CatR is a Fur-type transcriptional regulator, like PerR in B. subtilis, CatR represses catA expression. With the palindromic sequences found from transcriptome and computing analysis from previous part, we deduced CatR regulates more than four different genes. We confirmed the catA, catR, SCO2027, and SCO4983 are under CatR regulation by transcriptional fusion and mutation assay. Also, the in vivo Chromatin immunoprecipitation quantitative Polymerase chain reaction supports this hypothesis. Among the CatR regulon, the function of SCO2027 was investigated. SCO2027 was annotated as hypothetical membrane protein. By searching protein BLAST, we could predict this protein might have the role in iron homeostasis. In SCO2027 deletion mutant strain, the iron level is low compared to wild type. This indicates SCO2027 acts as an importer protein in S. coelicolor. This hypothesis is also supported by iron responsive gene expression experiments.Streptomyces coelicolor λŠ” 그람 μ–‘μ„± μ„Έκ· μœΌλ‘œμ„œ λ³΅μž‘ν•œ μƒν™œμ‚¬λ₯Ό 가지고 μžˆλ‹€. 이 λ°•ν…Œλ¦¬μ•„λŠ” μƒλŒ€μ μœΌλ‘œ μ»€λ‹€λž€ μ§€λ†ˆ(Genome)을 가지고 있고, 수 λ§Žμ€ 전사 쑰절인자 (transcriptional regulators) λ₯Ό κ°–λŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ Έμžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” OxyR κ³Ό CatR 에 μ˜ν•œ μ „μ‚¬μ‘°μ ˆκ³Ό κ·Έλ“€μ˜ 역할에 λŒ€ν•΄μ„œ 연ꡬλ₯Ό μ§„ν–‰ν•˜μ˜€λ‹€. Peroxide 에 λŒ€ν•œ μ „μ‚¬μ‘°μ ˆμΈμžλ‘œ μ•Œλ €μ§„ PerR κ³Ό OxyR을 λ™μ‹œμ— κ°–λŠ” λ°•ν…Œλ¦¬μ•„λŠ” 맀우 ν¬κ·€ν•˜λ‹€. Neisseria gonorrhoeae λ₯Ό μ œμ™Έν•œ λ‹€λ₯Έ λ°•ν…Œλ¦¬μ•„μ—μ„œλŠ” μœ μΌν•˜κ²Œ λ°©μ„ κ· λ§Œμ΄ 두 쑰절자λ₯Ό κ°–λŠ” 걸둜 μ•Œλ €μ Έμžˆλ‹€. 일반적으둜 PerRκ³Ό OxyR 이 μ‘°μ ˆν•˜λŠ” μœ μ „μž 쀑 μƒλ‹Ήμˆ˜κ°€ 그람 μ–‘μ„±κ· κ³Ό 그람 μŒμ„±κ· μ—μ„œ λ™μΌν•˜λ‹€κ³  보고된 λ°” μžˆλ‹€. ν•˜μ§€λ§Œ, S. coelicolor 의 경우, OxyR κ³Ό CatR 에 μ˜ν•΄μ„œ μ‘°μ ˆλ˜λŠ” 각각의 μœ μ „μžμ˜ μˆ˜κ°€ μƒλŒ€μ μœΌλ‘œ 덜 μ•Œλ €μ Έ 있고, 세포 λ‚΄μ—μ„œ 특이적으둜 λ‹΄λ‹Ήν•˜λŠ” κΈ°λŠ₯은 잘 μ•Œλ €μ Έμžˆμ§€ μ•Šμ•˜λ‹€. λ•Œλ¬Έμ—, λ³Έ μ—°κ΅¬μ—μ„œλŠ” 이 두 μœ μ „μžκ°„μ˜ 역할이 세포 λ‚΄μ—μ„œ μ–΄λ–»κ²Œ 뢄리가 λ˜μ–΄ μžˆλŠ”μ§€ μ•Œμ•„λ³΄κ³ μž, catA 의 μ£Όμš” 쑰절 인자둜 μ•Œλ €μ§„ CatR κ³Ό ahpCD의 쑰절 인자둜 μ•Œλ €μ§„ OxyR 에 λŒ€ν•΄μ„œ μ „μ²΄μ§€λ†ˆμ— λŒ€ν•œ 전사체 뢄석 (Genome-wide Transcriptome Analysis)λ₯Ό μ§„ν–‰ν•¨μœΌλ‘œμ„œ, 각 μ „μ‚¬μ‘°μ ˆμΈμžλ‘œλΆ€ν„° μ‘°μ ˆμ„ 받은 또 λ‹€λ₯Έ μœ μ „μžλ₯Ό 찾고자 ν•˜μ˜€λ‹€. 전사체 뢄석을 톡해 κ³Όμ‚°ν™”μˆ˜μ†Œ (hydrogen peroxide)에 λ°˜μ‘ν•˜λŠ” 190개의 λ°œν˜„μ΄ μ¦κ°€ν•˜λŠ” μœ μ „μžμ™€, 83개의 λ°œν˜„μ΄ κ°μ†Œν•˜λŠ” μœ μ „μžλ₯Ό λΆ„λ¦¬ν•˜μ˜€κ³  각각의 λ°œν˜„ νŒ¨ν„΄λ³„λ‘œ μ–΄λ–€ κΈ°λŠ₯에 Enrich λ˜λŠ”μ§€ 확인할 수 μžˆμ—ˆλ‹€. κ·Έ κ²°κ³Ό, κ³Όμ‚°ν™”μˆ˜μ†Œμ— μ˜ν•΄μ„œ λ°œν˜„μ΄ μ¦κ°€λ˜λŠ” μœ μ „μžμ˜ μƒλ‹Ήμˆ˜λŠ” ν™œμ„±μ‚°μ†Œλ₯Ό 쀑화 (ROS detoxification) 에 κ΄€μ—¬ν•˜λŠ” μœ μ „μžλ₯Ό ν¬ν•¨ν•˜μ—¬, DNA 손상 볡ꡬ(DNA damage repair) 와 κ΄€λ ¨λœ μœ μ „μžλ“€μ΄ λ‹€μˆ˜ λ°œκ²¬λ˜μ—ˆλ‹€. λ°˜λŒ€λ‘œ, κ³Όμ‚°ν™”μˆ˜μ†Œμ— μ˜ν•΄ μœ μ „μž λ°œν˜„μ΄ κ°μ†Œν•˜λŠ” μœ μ „μžλ“€μ€ 뢄석 κ²°κ³Ό μ² (Iron)을 μ„Έν¬λ‚΄λ‘œ λ“€μ—¬μ˜€λŠ”λ° κ΄€λ ¨λœ μœ μ „μžκ°€ 많이 μ‘΄μž¬ν•˜λŠ” 것을 κΈ°λŠ₯적 뢄석 (Functional analysis)λ₯Ό ν†΅ν•΄μ„œ 확인할 수 μžˆμ—ˆλ‹€. λ˜ν•œ, μ΄λŸ¬ν•œ μœ μ „μž λ°œν˜„ νŒ¨ν„΄μ˜ μƒλ‹Ήμˆ˜κ°€ OxyR λ˜ν•œ CatR κ³Ό 맀우 λ°€μ ‘ν•˜κ²Œ μ—°κ΄€λ˜μ–΄ μžˆλŠ” 것을 확인할 수 μžˆμ—ˆλ‹€. λ”μš±μ΄, λ°œν˜„ νŒ¨ν„΄μ΄ λ™μΌν•˜κ²Œ λ¬Άμ΄λŠ” μœ μ „μžλ“€μ˜ μƒμœ„ 200 nt μ„œμ—΄ 뢄석을 ν†΅ν•˜μ—¬, λͺ‡ 가지 보쑴된 νšŒλ¬Έμ„œμ—΄ (Palindromic sequences)λ₯Ό 찾을 수 μžˆμ—ˆλ‹€. λ¬Έν—Œ 쑰사λ₯Ό ν†΅ν•΄μ„œ, κ³Όμ‚°ν™”μˆ˜μ†Œ μŠ€νŠΈλ ˆμŠ€ν•˜μ—μ„œ λ°œν˜„μ΄ κ°μ†Œν•˜λŠ” μœ μ „μžλ“€μ˜ μ „μ‚¬μ‘°μ ˆ λΆ€μœ„μ— μ‘΄μž¬ν•˜λ˜ νšŒλ¬Έμ„œμ—΄μ€ μ²  λ°˜μ‘ 쑰절자 (iron responsive regulator)인 DmdR 의 직접 κ²°ν•© λΆ€μœ„ (direct binding sites) μž„μ„ 확인할 수 μžˆμ—ˆκ³ , 좔가적인 DmdR 쑰절 μœ μ „μžλ“€μ„ 찾을 수 μžˆμ—ˆλ‹€. CatR은 Fur κ³„μ—΄μ˜ μ „μ‚¬μ‘°μ ˆμΈμž (Fur type transcriptional regulator) λ‘œμ„œ, B. subtilis 의 PerR κ³Ό 상동성이 높은 μ–΅μ œ 쑰절인자(repressor)이닀. λ•Œλ¬Έμ— B. subtilis μ—μ„œ μ•Œλ €μ§„ 것과 λ§ˆμ°¬κ°€μ§€λ‘œ, S. coelicolor μ—μ„œλ„ μ‚°ν™”μŠ€νŠΈλ ˆμŠ€(Oxidative stress) 에 특이적으둜 λŒ€μ‘ν•  수 μžˆλŠ” catA 의 λ°œν˜„μ„ μ‘°μ ˆν•˜μ—¬, Catalase 생성에 영ν–₯을 μ€€λ‹€κ³  μ•Œλ €μ Έμžˆλ‹€. μ•žμ„  전사체 뢄석을 톡해, CatR 에 μ˜ν•΄ 쑰절이 λ˜λŠ” 것과 같은 λ°œν˜„ νŒ¨ν„΄μ„ λ‚˜νƒ€λ‚΄λŠ” μœ μ „μž(catA, catR, SCO2027, and SCO4983) μ€‘μ—μ„œ λͺ‡ κ°€μ§€μ—μ„œ κ³΅ν†΅λœ νšŒλ¬Έμ„œμ—΄μ΄ μ‹€μ œλ‘œ μž‘λ™ν•˜λŠ”μ§€ ν™•μΈν•˜κΈ° μœ„ν•œ μ‹€ν—˜ κ²°κ³Ό, 이전에 μ•Œλ €μ§„ 23 bp 의 νšŒλ¬Έμ„œμ—΄λ³΄λ‹€ promoter 와 κ·Όμ ‘ν•˜κ²Œ μ‘΄μž¬ν•˜λŠ” μƒˆλ‘­κ²Œ μ°Ύμ•„λ‚Έ 15 bp 의 νšŒλ¬Έμ„œμ—΄μ—μ„œ κ³Όμ‚°ν™”μˆ˜μ†Œ λ°˜μ‘μ„±μ— 더 λ―Όκ°ν•œ λ°˜μ‘μ„ λ³΄μΈλ‹€λŠ” 것을 전사체 뢄석을 ν†΅ν•˜μ—¬ 확인할 수 μžˆμ—ˆλ‹€. 이것은 in vivo μƒμ—μ„œ C-말단에(C-terminal) FLAG epitope 이 ν‘œμ§€λœ CatR λ‹¨λ°±μ§ˆμ—μ„œ 특이적으둜 15 bp motif 에 κ²°ν•©ν•˜λŠ” 것을 ν™•μΈν•¨μœΌλ‘œμ„œ μ•žμ˜ 가섀을 지지할 수 μžˆμ—ˆλ‹€. μƒˆλ‘­κ²Œ 찾은 SCO2027 의 κΈ°λŠ₯을 λΆ„μ„ν•˜κΈ° μœ„ν•˜μ—¬, λ‹¨λ°±μ§ˆ BLAST (BLASTP) 검색을 ν†΅ν•˜μ—¬, S. pombe 의 Pcl1 μ΄λΌλŠ” μ²  전달 λ‹¨λ°±μ§ˆμ΄λΌλŠ” 것을 확인할 수 μžˆμ—ˆλ‹€. S. pombe μ—μ„œ Pcl1은 μ—¬λΆ„μ˜ μ²  (excessive iron) 을 앑포 (vacuole)에 μ €μž₯ν•˜λŠ” 역할을 ν•˜κ²Œ λ˜λŠ”λ°, λ°•ν…Œλ¦¬μ•„μ˜ 경우 앑포가 μ‘΄μž¬ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ—, 철을 세포 λ‚΄λ‘œ λ“€μ—¬μ˜€λŠ” 역할을 ν•˜λŠ”μ§€, λ‚΄λ³΄λ‚΄λŠ” 역할을 ν•˜λŠ”μ§€ μ•Œ 수 μ—†μ—ˆλ‹€. λ”°λΌμ„œ, 세포 λ‚΄μ˜ 전체 μ²  양을 ν™•μΈν•¨μœΌλ‘œμ„œ, κ°„μ ‘μ μœΌλ‘œ SCO2027의 역할을 ν™•μΈν•˜κ³ μž ν•˜μ˜€λ‹€. λ¨Όμ € SCO2027 결핍 κ· μ£Όλ₯Ό μ œμž‘ν•˜κ³ , μ•Όμƒν˜•κ³Ό λΉ„κ΅ν•˜μ—¬ μ²  양을 λΆ„μ„ν•¨μœΌλ‘œμ„œ SCO2027 κ²°ν•κ· μ£Όμ—μ„œ μ²  양이 μ€„μ–΄λ“€μ–΄μžˆλŠ” 것을 확인할 수 μžˆμ—ˆλ‹€. 이λ₯Ό ν†΅ν•΄μ„œ, SCO2027 이 철을 λ“€μ—¬μ˜€λŠ” λ‹¨λ°±μ§ˆλ‘œμ„œμ˜ 역할을 ν•  κ²ƒμœΌλ‘œ μ˜ˆμƒ ν•  수 μžˆμ—ˆλ‹€. μ‹€μ œλ‘œ 철에 λ―Όκ°ν•˜κ²Œ λ°˜μ‘ν•˜λŠ” μœ μ „μžλ“€μ„ SCO2027 κ²°μ‹€ κ· μ£Όμ—μ„œ λΆ„μ„ν•œ κ²°κ³Ό, wild-type 에 λΉ„ν•΄μ„œ λ°œν˜„μ΄ μ¦κ°€λ˜μ–΄ μžˆμŒμ„ 확인할 수 μžˆμ—ˆλ‹€.CHAPTER I. INTRODUCTION. 1 I.1. Biology of Streptomyces coelicolor 2 I.2. Reactive Oxygen Species. 5 I.2.1. Superoxide radical (O2-) 5 I.2.2. Hydrogen peroxide (H2O2) 6 I.2.3. Hydroxyl radical (OH.) 6 I.2.4. Singlet oxygen. 7 I.3. Mechanisms of oxidative cell damage 9 I.4. Biological defense system to cope with oxidative stress 9 I.4.1. Biological defense system in S. coelicolor 10 1.4.1.1. PerR/CatR 10 1.4.1.2. OxyR. 10 1.4.1.3. OhrR 11 I.5. Aim of this study. 13 Chapter II. Materials and methods. 14 II.1. Strains and growth conditions. 15 II.1.1. Streptomyces coelicolor 15 II.1.2. Escherchia coli 15 II.1.3. Antibiotics and Chemicals treatment. 15 II.2. General DNA manipulation 20 II.2.1. Polymerase Chain Reaction (PCR) 20 II.2.2. DNA sequencing. 20 II.2.3. Introduction of DNA into Streptomyces. 21 II.2.4. Mutant construction by PCR-targeting mutagenesis methods. 21 II.2.5. Site-directed mutagenesis 24 II.2.6. Construction of catA promoter variants for Transcriptional fusion assay 24 II.3. Protein analysis. 25 II.3.1. Preparation of cell extracts. 25 II.3.2. Detection of Catalase activity 25 II.3.3. Overproduction and purification of OxyR, CatR, and OhrR in E. coli. 25 II.4. Electrophoretic mobility shift assay (EMSA) 26 II.4.1. EMSA for OxyR binding 26 II.4.2. EMSA for CatR binding. 26 II.4.3. EMSA for OhrR binding. 27 II.5. RNA analysis 28 II.5.1. RNA extraction. 28 II.5.1.1. RNA extraction by Kirby-mix method 28 II.5.1.2. RNA extraction by Hot-acid-phenol method. 28 II.5.1.3. DNaseI treatment for contaminant genomic DNA removal 28 II.5.2. S1 nuclease mapping 29 II.5.3. Quantitative Real Time PCR (qRT-PCR). 29 II.6. Transcriptome analysis 30 II.6.1. Sequencing condition 30 II.6.2. Library preparation and RNA-sequencing. 30 II.6.3. Data analysis. 31 II.6.4. Databases and resources used in this study 31 II.7. Chromatin Immunoprecipitation (ChIP). 32 II.8. Iron contents measurement. 33 II.8.1. Ferrozine assay. 33 II.8.2. Inductively coupled plasma mass spectrometry (ICP-MS). 33 CHAPTER Ξ™IΞ™. Hydrogen Peroxide Responsive Genes in S. coelciolor. 34 III.1. Introduction. 35 III.2.1. The presence of OxyR and PerR in bacteria. 35 III.2.2. Responsiveness of H2O2 stress in ahpCD and catA in S. coelicolor 39 III.2.3. Transcriptome analysis for labor of division in oxidative stress response in S. coelicolor 39 III.2.4. Sequencing statistics 42 III.2.5. Correlation and variance between samples. 42 III.2.6. Differentially expressed genes and in M145, Ξ”catR, Ξ”oxyR, and Ξ”ohrR condition 42 III.2.7. Conserved motif in response to H2O2 in M145 and Ξ”catR strain. 47 III.3. Discussion. 48 CHAPTER Ξ™V. CatR mediated hydrogen peroxide response in S. coelicolor 59 IV.1. Introduction 60 IV.2.1. Sensitivity of ahpCD and catA transcript to H2O2 60 IV.2.2. Search for direct regulon of CatR. 61 IV.2.3. Identification of CatR binding motif in S. coelicolor 61 IV.2.4 CatR binding motif is located on or nascent to each promoter. 63 IV.2.5. CatR binds to upstream region of catA, catR, SCO2027, and SCO4983. 63 IV.2.6. CatR binds to Motif I upstream region of catA 66 IV.2.7. The expression of SCO2027 and SCO4983 were upregulated upon H2O2 stress. 70 IV.2.8. The role of SCO2027 regulated by CatR in S. coelicolor. 70 IV.2.9. The total iron level in various strains 74 IV.2.10. Iron responsive genes expression in S. coelicolor 74 IV.2.11. Existence of SCO2027 homologous protein in bacteria 75 IV.3. Discussion 80 CHAPTER V. References. 82 Chapter VI. APPENDIX. 94 ꡭ문초둝 132Docto
    corecore