32 research outputs found

    ιŽι…ΈεŒ–ζ°΄η΄ (Hydrogen peroxide)에 依해 θͺ˜ε°Žλ˜λŠ” κ΅°μ†Œ(Aplysia) ζ„Ÿθ¦Ίη₯žηΆ“η΄°θƒžμ˜ η΄°θƒžζ­»ζ»…μ— ι—œν•œ 瑏穢

    No full text
    Thesis (master`s)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :ν˜‘λ™κ³Όμ • μœ μ „κ³΅ν•™μ „κ³΅,2002.Maste

    Engineering of 3D cellular microenvironment for reconstitution of blood/lymphatic vessel formation and function

    No full text
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 기계항곡곡학뢀, 2014. 2. μ „λˆ„λ¦¬.μ•”μ˜ μ„±μž₯κ³Ό 전이, 당뇨 망막병증, 노인성 ν™©λ°˜λ³€μ„± λ“± 70μ—¬μ’… μ΄μƒμ˜ λ‹€μ–‘ν•œ μ§ˆλ³‘μ€ ν˜ˆκ΄€ν˜Ήμ€ λ¦Όν”„κ΄€ 의 비정상적 μ„±μž₯ 및 κΈ°λŠ₯에 μ˜ν•΄ 유발 ν˜Ήμ€ μ•…ν™”λœλ‹€. λ”°λΌμ„œ ν˜ˆκ΄€ 및 λ¦Όν”„κ΄€μ˜ ν˜•μ„±κ³Ό κΈ°λŠ₯을 μ‘°μ ˆν•¨μœΌλ‘œμ¨ μ΄λŸ¬ν•œ μ§ˆλ³‘μ„ κ·Ήλ³΅ν•˜κ³ μž ν•˜λŠ” λ…Έλ ₯이 μ˜μ•½ν•™λΆ„μ•Ό μ „λ°˜μ— 걸쳐 ν™œλ°œνžˆ 이루어지고 μžˆλ‹€. ν˜ˆκ΄€μ˜ ν˜•μ„±κ³Ό κΈ°λŠ₯에 κ΄€λ ¨λœ 기초 μ˜ν•™ 연ꡬ와 μ‹ μ•½μ˜ 효과 ν‰κ°€μ—λŠ” ν•„μ—°μ μœΌλ‘œ 세포배양을 ν†΅ν•œ 체외 λͺ¨λΈμ„ ν•„μš”λ‘œ ν•œλ‹€. λ‚΄ν”Όμ„Έν¬μ˜ λ―Έμ„Έν™˜κ²½μ€ 3차원 μ„Έν¬μ™ΈκΈ°μ§ˆ(extracellular matrix), λ‹€μ–‘ν•œ 세포ꡰ μ‚¬μ΄μ˜ μƒν˜Έμž‘μš©, 혈λ₯˜ 및 혈μž₯의 μœ λ™μ— μ˜ν•œ 생물리적 자극 λ“± 볡합적인 μΈμžλ“€μ˜ κ²°ν•©μœΌλ‘œ 이루어져 μžˆλ‹€. μ΄λŸ¬ν•œ μΈμžλ“€μ€ ν˜ˆκ΄€μ˜ ν˜•μ„± κ³Όμ •μ—μ„œ 볡합적인 영ν–₯을 λ―ΈμΉ  뿐 μ•„λ‹ˆλΌ ν˜•μ„±λœ ν˜ˆκ΄€μ˜ κΈ°λŠ₯κ³Ό 항상성 μœ μ§€μ— μžˆμ–΄μ„œλ„ μ€‘μš”ν•œ 역할을 μˆ˜ν–‰ν•œλ‹€. 기쑴의 ν˜ˆκ΄€λͺ¨λΈμ—μ„œλŠ” μ΄λŸ¬ν•œ μΈμžλ“€μ΄ λΆ€λΆ„μ μœΌλ‘œ κ²°μ—¬λ˜μ–΄ μžˆκ±°λ‚˜ μ •λ°€ μ œμ–΄λ˜μ§€ λͺ»ν•˜λŠ” 취약점을 지녀, 이λ₯Ό 톡해 κ΄€μ°°λœ μ„Έν¬λ°˜μ‘μ΄ μƒμ²΄ν˜„μƒμ„ μ΄ν•΄ν•˜λŠ”λ° μ œν•œμ μΈ μ •λ³΄λ§Œμ„ μ œκ³΅ν•œλ‹€λŠ” ν•œκ³„λ₯Ό 가진닀. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•˜λŠ” λ―Έμ„Έμ†Œμž(microdevice)λŠ” ν˜ˆκ΄€μ˜ ν˜•μ„±κ³Ό κΈ°λŠ₯에 κ΄€λ ¨λœ μ£Όμš” μΈμžλ“€, λ‹€μ–‘ν•œ 세포ꡰ μ‚¬μ΄μ˜ μƒν˜Έ μ‹ ν˜Έμ „λ‹¬, 세포-μ„Έν¬μ™ΈκΈ°μ§ˆ μƒν˜Έμž‘μš©, 그리고 ν˜ˆκ΄€ 고유의 생화학, 생물리적 μ‹ ν˜ΈλΆ„μžλ₯Ό 3차원 λ°°μ–‘ν™˜κ²½μ—μ„œ κ²°ν•©ν•˜μ—¬ μ²΄λ‚΄μ—μ„œ κ΄€μ°°λ˜λŠ” ν˜ˆκ΄€ ν˜•μ„±μ˜ 단계적인 과정을 높은 μœ μ‚¬μ„±μ„ 톡해 κ΅¬ν˜„ν•˜μ˜€λ‹€. 특히 ν˜ˆκ΄€λ‚΄ν”Όμ„Έν¬μ™€ μ„¬μœ μ•„μ„Έν¬μ˜ 곡간적인 λ°°μΉ˜μ™€ λ°°μ–‘ν˜•νƒœλ₯Ό μ œμ–΄ν•¨μœΌλ‘œμ¨ λ°°μ•„μ˜ λ°œμƒ λ‹¨κ³„μ—μ„œ κ΄€μ°°λ˜λŠ” ν˜ˆκ΄€ν˜•μ„± κ³Όμ •(vasculogenesis)와 κΈ°μ‘΄ ν˜ˆκ΄€μ—μ„œ μƒν˜ˆκ΄€μ΄ μ„±μž₯ν•˜λŠ” κ³Όμ •(angiogenesis)이 μ •λ°€ λͺ¨μ‚¬ν•˜μ˜€λ‹€. λ˜ν•œ μ΄λŸ¬ν•œ 과정을 톡해 ν˜•μ„±λ˜λŠ” ν˜ˆκ΄€λ§μ€ μ„±μž₯의 μ΅œμ’… λ‹¨κ³„μ—μ„œ 자발적으둜 ν˜ˆκ΄€ λ‚΄λΆ€λ‘œμ˜ 접근을 κ°€λŠ₯토둝 ν•˜λŠ” μž…, 좜ꡬλ₯Ό ν˜•μ„±ν•˜λ„λ‘ μœ λ„λ¨μœΌλ‘œμ¨ 3차원 체외 ν˜ˆκ΄€μ—μ„œλ„ 혈λ₯˜ μœ λ™μ„ λͺ¨μ‚¬ν•  수 μžˆλŠ” μ‹€ν—˜μ  기법을 제곡, κΈ°μ‘΄ 기술의 ν•œκ³„μ μ„ κ·Ήλ³΅ν•˜μ˜€λ‹€. 이 방법은 3차원 세포배양, 생리적인 ν˜ˆκ΄€μ˜ μ„±μž₯, ν˜ˆκ΄€ 특이적인 λ―Έμ„Έ ν™˜κ²½μ˜ μ •λ°€ λͺ¨μ‚¬, 혈λ₯˜ μœ λ™μ„ ν†΅ν•œ ν˜ˆκ΄€ κΈ°λŠ₯의 λ°œν˜„μ΄λΌλŠ” 기술적 κ³Όμ œλ“€μ„ ν•˜λ‚˜μ˜ λͺ¨λΈμ—μ„œ ν†΅ν•©μ μœΌλ‘œ κ΅¬μΆ•ν•¨μœΌλ‘œμ¨ 기쑴의 방식에 λΉ„ν•΄ 높은 생체 μœ μ‚¬μ„±κ³Ό 신뒰성을 μ§€λ‹Œ ν˜ˆκ΄€ λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€λ‹€. λ˜ν•œ ν˜ˆκ΄€μ˜ 신생과 ν˜•νƒœμ μœΌλ‘œ μœ μ‚¬ν•œ μ„±μž₯ 과정을 λ³΄μ—¬μ£ΌλŠ” λ¦Όν”„κ΄€ μ‹ μƒμ˜ 연ꡬλ₯Ό 톡해 개발된 λͺ¨λΈ μ‹œμŠ€ν…œμ˜ ν™œμš© λ²”μœ„λ₯Ό ν™•λŒ€ν•˜μ˜€λ‹€. λ¦Όν”„κ΄€μ˜ 신생은 μ•”μ˜ 전이 κ³Όμ •μ—μ„œ κ΄€μ°°λ˜λŠ” μ£Όμš” 세포거동이며 μ—Όμ¦λ°˜μ‘μ΄λ‚˜ μžκ°€λ©΄μ—­μ§ˆν™˜ λ“± λ‹€μ–‘ν•œ 병리적 ν˜„μƒμ—μ„œ μ£Όμš”ν•œ 단계에 ν•΄λ‹Ήν•œλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ 개발된 ν”Œλž«νΌμ€ μ„±μž₯μΈμžμ™€ μ‘°μ§μ•‘μ˜ 흐름(interstitial flow)μ΄λΌλŠ” 두 가지 μ£Όμš” μžκ·Ήμ„ κ²°ν•©μ μœΌλ‘œ 세포에 μ „λ‹¬ν•¨μœΌλ‘œμ¨ 기쑴의 λͺ¨λΈμ— λΉ„ν•΄ 높은 생체 μœ μ‚¬μ„±μ„ κ°€λŠ₯μΌ€ ν•˜μ˜€λ‹€. λ―Έμ„Έμœ μ²΄μ†Œμž λ‚΄μ—μ„œ λ°°μ–‘λœ λ¦Όν”„κ΄€ λ‚΄ν”Όμ„Έν¬λŠ” ν˜ˆκ΄€μ„±μž₯인자(vascular endothelial growth factor, VEGF), μ„¬μœ μ•„μ„Έν¬ μ„±μž₯인자 (basic fibroblast growth factor, bFGF), μŠ€ν•‘κ³ μ‹  1-인산 (sphingosing 1-phosphate) λ“±μ˜ λ‹€μ–‘ν•œ 생화학 λΆ„μžλ“€μ˜ 농도ꡬ배에 λ°˜μ‘ν•˜μ—¬ 림프관을 ν˜•μ„±ν•˜μ˜€λ‹€. ν•˜μ§€λ§Œ 여기에 유체의 μœ λ™μ— μ˜ν•œ 기계적인 μžκ·Ήμ„ λ™μ‹œμ— μΈκ°€ν–ˆμ„ λ•Œ λ¦Όν”„κ΄€μ˜ μ„±μž₯에 ν†΅κ³„μ μœΌλ‘œ μœ μ˜λ―Έν•œ ν–₯상이 κ΄€μ°°λ˜μ—ˆμœΌλ©°, 유체 μœ λ™μ˜ 속도와 κ·Έ λ°©ν–₯에도 λ―Όκ°ν•œ μ„Έν¬κ±°λ™μ˜ 차이λ₯Ό λ‚˜νƒ€λƒˆλ‹€. κ°€μž₯ 높은 λ¦Όν”„κ΄€μ˜ μ„±μž₯이 κ΄€μ°°λœ 쑰건은 μ„±μž₯인자의 κ³Όλ°œν˜„κ³Ό 높은 λ¦Όν”„μ•‘ μœ λ™λŸ‰μ΄λΌλŠ” μ•” μ£Όλ³€ λ―Έμ„Έν™˜κ²½μ˜ μ „ν˜•μ μΈ νŠΉμ§•κ³Ό μΌμΉ˜ν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. 특히 μ΄λŸ¬ν•œ μ‘°κ±΄μ—μ„œ ν˜•μ„±λœ 림프관은, 생체 λ‚΄μ—μ„œ κ΄€μ°°λ˜λŠ” λ¦Όν”„κ΄€κ³Ό 쑰직학적 ν‘œμ§€, ν˜•νƒœν•™μ  νŠΉμ§• λ“± λ‹€μ–‘ν•œ λ©΄μ—μ„œ μœ μ‚¬μ„±μ„ λ³΄μ˜€λ‹€. λ˜ν•œ μ‹€ν—˜μ μœΌλ‘œ κ°„νŽΈν•˜λ©΄μ„œλ„ 높은 생체 μœ μ‚¬μ„±μ„ λ³΄μ΄λŠ” λͺ¨λΈμ„ 톡해 λ‹€μ–‘ν•œ 약물에 λ”°λ₯Έ λ¦Όν”„κ΄€ ν˜•μ„± 양상을 κ΄€μ°°ν•˜κ³  이λ₯Ό μ •λŸ‰ν™” ν•¨μœΌλ‘œμ¨ λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ λͺ¨λΈμ΄ μ‹ μ•½μ˜ κ°œλ°œκ³Όμ •μ—μ„œλ„ μœ μš©ν•œ νŠΉμ„±μ„ μ§€λ‹˜μ„ μž…μ¦ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬λŠ” 3차원 세포배양, 생리적인 ν˜ˆκ΄€κ³Ό λ¦Όν”„κ΄€μ˜ μ„±μž₯, ν˜ˆκ΄€μ˜ 특이적인 λ―Έμ„Έ ν™˜κ²½μ˜ μ •λ°€ λͺ¨μ‚¬, 혈λ₯˜ μœ λ™μ„ ν†΅ν•œ ν˜ˆκ΄€ κΈ°λŠ₯의 λ°œν˜„μ΄λΌλŠ” 기술적 κ³Όμ œλ“€μ„ ν•˜λ‚˜μ˜ λͺ¨λΈμ—μ„œ ν†΅ν•©μ μœΌλ‘œ κ΅¬μΆ•ν•¨μœΌλ‘œμ¨ 기쑴의 방식에 λΉ„ν•΄ 높은 생체 μœ μ‚¬μ„±κ³Ό 신뒰성을 μ§€λ‹Œ 체외 λͺ¨λΈμ„ μ œκ³΅ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ λ―Έμ„Έμ†ŒμžλŠ” μ‹€ν—˜μ˜ νš¨μœ¨μ„±, μž¬ν˜„μ„±, μ‹ λ’°μ„± μΈ‘λ©΄μ—μ„œ μž₯점을 지녀 λ―Έμ„Έμ†Œμžμ˜ 병렬화λ₯Ό ν†΅ν•œ μ‹ μ•½κ°œλ°œ, μ˜μ•½ν•™κ³Ό 세포생물학 λΆ„μ•Όμ˜ κΈ°μ΄ˆμ—°κ΅¬λ₯Ό λŒ€μƒμœΌλ‘œ ν•œ 폭넓은 ν™œμš©μ΄ κΈ°λŒ€λœλ‹€.Numerous pathologies including tumor metastasis, diabetic retinopathy, age-related macular degeneration and edema are induced or exacerbated by malfunction and aberrant growth of blood or lymphatic vessels. Therefore, attempts in medical and pharmacological researches have been made to treat these disorders by modulating formation and function of blood and lymphatic vessels, which necessarily requires cell-culture-based in vitro models. The microenvironments of endothelial cells are constructed by integration of key constituents such as multiple cell types in close interactions, 3-dimensional extracellular matrix (ECM), biochemical cues and flow-induced mechanical stresses. These factors not only modulate formation of blood/lymphatic vessels, but also influence characteristic functions and homeostasis. However, current in vitro models of blood/lymphatic vessels usually do not integrate these key elements in a single platform or lack precise spatiotemporal control over relevant parameters, thus cellular behaviors observed in these systems only provide limited information and predictions of in vivo phenomena. In this thesis, we present a novel in vitro model which provides close reconstitution of complex cellular dynamics observed during processes of in vivo angiogenesis and lymphangiogenesis by integrating important elements of endothelial microenvironments including endothelial-stromal cell interactions, cell-ECM interactions, biochemical and mechanical stimulants in controlled 3D cell culture environments. For development of blood vessel and angiogenesis model, we used surface-tension-assisted cell and ECM patterning technique to precisely control relative location and distribution of endothelial and fibroblast cell types so that paracrine interactions between these two cells types induce endothelial cells to undergo natural programs of vessel morphogenesis, vasculogenesis and angiogenesis in our chip. One of major attributes of our model is that endothelial cells forming vascular networks spontaneously established perfusable accesses into the lumens allowing introduction of fluid flow through the vasculatures, which overcomes the technical hurdle that suffered by conventional models of blood vessel usually lacking either one of two essential factors, cell-autonomously established 3D vasculatures and flow-induced mechanical shear stress. The resulting vascular networks exhibited close resemblance of in vivo capillary networks in biochemical marker expression and structural aspects, as well as fluid-flow induced endothelial specific morphologies and characteristic functions. Next, we demonstrated that the developed system can provide novel experimental opportunities in the investigation of lymphangiogenesis, new lymphatic vessel formation via sprouting morphogenesis from pre-existing lymphatics. Of particular note, this model is optimally suited for co-stimulation of biochemical and mechanical stimuli, both of which are proven to be important for lymphatic morphogenesis in our chip. While static condition, where lymphatic endothelial cells are exposed to increasing concentration gradients of pro-lymphangiogenic factors, induced lymphatic sprouts in 3D fibrin matrix, combination of these factors and interstitial flow with direction reminiscent of lymph flow, significantly promoted lymphatic sprouting with direction against the fluid flow. Not only presence of interstitial flow, but also magnitudes and directions of interstitial flow resulted in sensitive responses of LECs toward these mechanical stimuli. The condition most actively promoted lymphatic sprouting corresponds to the tumor microenvironments where characterized by overexpression of plethora of cytokines and growth factors and elevated lymph flow, explaining how these altered microenvironments exacerbate peritumor lymphangiogenesis and metastatic dissemination of tumor cells through lymph nodes. Furthermore, the lymphatic sprouts grown in our model displayed similar characteristics with in vivo lymphatic capillaries in biochemical and morphological features. We also demonstrated the potential utility of our model in testing pharmacological modulators of lymphangiogenesis with quantitative evaluations and phenotypic changes with enhanced predictive potential. The microscale system presented in this thesis provides a novel in vitro model of blood/lymphatic formation and function with improved physiological relevance and reliability, and expected to have wide range of applications across pharmaceutical and biomedical researches.Abstract -------------------------------------------------------------------------------------------- i Contents ------------------------------------------------------------------------------------------- iv List of Tables ----------------------------------------------------------------------------------- viii List of Tables ------------------------------------------------------------------------------------- ix Chapter 1 Introduction ------------------------------------------------------------------------ 1 2 Engineering of functional, perfusable 3D microvascular networks through reconstitution of vasculogenesis and angiogenesis on a chip -- 6 2.1 Introduction ------------------------------------------------------------------- 6 2.2 Materials and methods ------------------------------------------------------ 8 2.2.1 Device fabrication --------------------------------------------- 8 2.2.2 Cell culture ------------------------------------------------------- 9 2.2.3 Vasculogenesis cell seeding ---------------------------------- 10 2.2.4 Angiogenesis cell seeding ------------------------------------- 10 2.2.5 Measuring the success rate of vessel perfusion --------- 11 2.2.6 Immunostaining ----------------------------------------------- 12 2.2.7 Imaging ---------------------------------------------------------- 13 2.2.8 Measurement of vessel permeability ---------------------- 13 2.2.9 Inflammatory response and HL-60 adhesion experiments ---------------------------------------------------- 14 2.2.10 Fluid perfusion experiments and statistical analysis of endothelial NO synthesis ------------------------------------ 15 2.2.11 Quantification of vessel area and length of sprouts ---- 17 2.3 Results ------------------------------------------------------------------------- 18 2.3.1 Microfluidic chip and experimental design -------------- 18 2.3.2 Formation of vasculogenesis- and angiogenesis-derived microvascular networks ------------------------------------- 19 2.3.3 Morphological and biochemical characterization of the vessels ----------------------------------------------------------- 21 2.3.4 Perfusable and intact lumina of the engineered microvascular networks ------------------------------------- 22 2.3.5 Flow-induced endothelial responses ---------------------- 24 2.3.6 In vitro modeling of endothelial interactions with pericytes, cancer cells and leukocytes -------------------- 26 2.4 Discussion --------------------------------------------------------------------- 28 2.5 Conclusions ------------------------------------------------------------------- 30 3 Reconstitution of sprouting morphognesis of lymphatics under combined stimulation of pro-lymphangiogenic factors and interstitial flow --------------------------------------------------------------------------------- 52 3.1 Introduction ------------------------------------------------------------------ 52 3.2 Materials and methods ----------------------------------------------------- 55 3.2.1 Device fabrication--------------------------------------------- 55 3.2.2 Cell culture and seeding in microfluidic devices ------- 55 3.2.3 Immunostaining and confocal imaging ------------------ 58 3.2.4 Quantitative validation of interstitial flow across 3D ECM ------------------------------------------------------------- 58 3.2.5 Treatment of anti-lymphangiogenic factors ------------- 59 3.2.6 Quantification and statistical analysis ------------------- 60 3.3 Results ------------------------------------------------------------------------- 60 3.3.1 Microfluidic platform for lymphatic sprouting under stimulation of pro-lymphangiogenic factors and interstitial flow ------------------------------------------------ 60 3.3.2 Sprouting of lymphatic endothelial cells in response to gradients of pro-lymphangiogenic factor ---------------- 61 3.3.3 Presence, direction and magnitude of interstitial flow determin activity of lymphatic sprouting ---------------- 62 3.3.4 Interstitial flow regulates lymphatic capillary network formation and directional expansion --------------------- 64 3.3.5 Interstitial flow drives directional sprouting growth and filopodia formation ------------------------------------------- 66 3.3.6 Lymphatic sprouts exhibit structural and biochemical characteristics of in vivo lymphangiogenesis ------------ 67 3.3.7 Modulation of lymphangiogenesis by small molecule inhibitors and inflammatory cytokine -------------------- 68 3.4 Discussion --------------------------------------------------------------------- 70 4 Conclusions ------------------------------------------------------------------------ 92 References ----------------------------------------------------------------------------------- 94 Abstract (in Korean) --------------------------------------------------------------------- 107Docto

    Noddings의 λ°°λ €λ₯Ό μœ„ν•œ ν•™κ΅κ΅μœ‘λ‘ 

    No full text
    상본 논문은 양성평등을 μ‹€ν˜„ν•˜λ €λŠ” 여성적 μ‹œκ°μΈ 배렀윀리의 κ΄€μ μ—μ„œ κ΅μœ‘κ³Όμ •β€€ν•™κ΅μ‘°μ§β€€κ΅μœ‘ν‰κ°€ μ˜μ—­μ„ ν¬ν•¨ν•œ ν•™κ΅κ΅μœ‘μ „λ°˜μ— λŒ€ν•΄ μ‹€μ œμ μΈ λ¬Έμ œλ“€κ³Ό 관련지어 κ²€ν† β€€λ…Όμ˜ν–ˆλ‹€. μ΄λŸ¬ν•œ 배렀관점은 곧 Noddings의 ꡐ윑적 μ‹œκ°μ΄λ‹€. 배렀관점은 ν”Όλ°°λ €μžμ˜ μ„±μž₯에 μ΅œμš°μ„ μˆœμœ„λ₯Ό 두고, ꡬ체적 상황을 κ°μ•ˆν•΄μ„œ κ΅μœ‘λ¬Έμ œλ“€μ„ ν’€λ €κ³  ν•˜λŠ” ꡐ윑적 μž…μž₯μ΄λΌλŠ” μ μ—μ„œ κ·Έ μ˜λ―Έκ°€ μžˆλ‹€. 이 λ…Όλ¬Έμ—μ„œ κ³ μ°°ν•˜μ—¬ 밝힌 λ‚΄μš©μ€ λ‹€μŒκ³Ό κ°™λ‹€. 첫째, λ°°λ €μœ€λ¦¬μ— λ”°λ₯Έ 여성적 κ°€μΉ˜λ₯Ό μ‹€ν˜„ν•˜λŠ” 일은 μ΅œμ†Œν•œ ν•™κ΅κ΅¬μ„±μ›μ˜ 인간관계λ₯Ό κ°œμ„ ν•  수 있고, 배렀의 μ‹€μ²œμ€ μ œλ‘œμ„¬ κ²Œμž„μ΄ μ•„λ‹ˆκΈ° λ•Œλ¬Έμ— λ‹€λ₯Έ ꡐ윑적 κΈ°λŠ₯을 μΆ•μ†Œμ‹œν‚€μ§€ μ•ŠλŠ”λ‹€λŠ” 것이닀. λ‘˜μ§Έ, 배렀관점이 비곡동체적인 μœ€λ¦¬λΌλŠ” λΉ„νŒμ„ κ·Ήλ³΅ν•˜κΈ° μœ„ν•΄μ„œ 개인의 κ΄€μ‹¬λΏλ§Œ μ•„λ‹ˆλΌ 곡적 이읡도 κ³ λ €ν•  ν•„μš”κ°€ μžˆλ‹€λŠ” 점이닀. μ…‹μ§Έ, 배렀관점은 κ΅μœ‘ν˜„μƒμ„ μ΄λΆ„λ²•μ μœΌλ‘œ νŒŒμ•…ν•˜μ§€ μ•ŠμœΌλ©°, λΆˆν‰λ“±, μ–΅μ••, κ°•μ œ, νšμΌν™”λ₯Ό μΌμœΌν‚¬ 수 μžˆλŠ” κ΅μœ‘μ— λ°˜λŒ€ν•œλ‹€λŠ” 것이닀. λ„·μ§Έ, 배렀관점은 λ‹€λ₯Έ νŽ˜λ―Έλ‹ˆμ¦˜λ³΄λ‹€ 지배 얡압에 λŒ€μ²˜ν•˜λŠ” 방법이 급진적이지 μ•Šκ³  쀑도적이며, κ΅μœ‘μ‹€μ œλ₯Ό λ―Έμ‹œμ  κ΄€μ μ—μ„œ μ΄ν•΄ν•˜μ§€ μ•Šκ³  κ±°μ‹œμ μœΌλ‘œ νŒŒμ•…ν•˜κ³ , DeweyλŠ” λ¬Όλ‘  Hutchins, Adler의 κ²¬ν•΄κΉŒμ§€λ„ μ ˆμΆ©β€€μ’…ν•©ν•˜λŠ” 츑면이 μžˆλ‹€λŠ” 점이닀. λ‹€μ„―μ§Έ, 배렀관점이 포슀트λͺ¨λ˜ν™”λœ κ΅μœ‘ν˜„μ‹€μ—μ„œμ˜ λΆ„κΆŒν™”, μˆ˜ν‰ν™”, μ‹œμŠ€ν…œν™”, μž¬κ΅¬μ‘°ν™”, 관계화λ₯Ό κ³„μ†μ μœΌλ‘œ 지ν–₯ν•œλ‹€λŠ” 사싀이닀. 결둠적으둜 κ΅μœ‘μ— μ μš©ν•¨μ— μžˆμ–΄μ„œ 배렀윀리의 여성적 접근은 μ •μ˜μœ€λ¦¬μ˜ 남성적 접근을 λ³΄μ™„ν•˜λŠ” ν•˜λ‚˜μ˜ λŒ€μ•ˆμΌ 것이닀. Caring as a rational moral orientation and maternal thinking is richly applicable to teaching. For instance confirmation is to reveal to the cared-for an attainable image of himself that is lovelier than that manifested in his present acts. A high expectation can be a mark of respect, but so can a relatively low one. One acting from a perspective of caring moves consciously in the other direction; that is, calls on a sense of obligation in order to stimulate natural caring and on a sense of duty or special obligation only when love or inclination fails. Small schools can help the pupils to get the serenity. Noddings believe that the chief obstacle to making schools smaller is simply a failure to set proper priorities in schooling. To take on a group of students when they enter high school and guide them through their entire high school mathematics curriculum can develop the relation of teacher and students that makes confirmation possible and may realize academic and professional benefits. The teacher may come to understand the whole math curriculum. Noddings suggested that students and teachers stay together by mutual consent and with the approval of parents. Noddings rejects the tests that is predictable winners and losers because someone has to be below average. Therefore I think in schools learning outcomes must be assessed by what each child learn rather than what all the children learn. Schools must pay attention to the moral and social growth of their citizens. We explore seriously an ethic of caring for education and suggest changes in every of schooling
    corecore