53 research outputs found
๋ฆฌํฌ์ด์จ ๋ฐฐํฐ๋ฆฌ ์๊ทน์ฌ๋ฃ์ ์๋์ง ํจ์จ๊ณผ ์ฃผ๊ธฐ ์ฑ๋ฅ์ ๋ํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ, 2017. 2. ์กฐ๋งนํจ.In this dissertation, a study on the energy dissipation and performance degradation of silicon anode of lithium ion batteries have been investigated by chemo-mechanical coupling finite element method. Galvanostatic charge โ discharge cycle is simulated, and the energy dissipation is calculated from entropy production due to diffusion and plastic deformation. Both silicon nanowire and silicon nanofilm anode have been simulated to observe the effect of anode geometry on dissipation. Yield strength, charge range and charge speed are varied in order to study the effect of material properties and charging condition. It is observed that whereas diffusion dissipation dominates in nanowire anode, plastic dissipation dominates in nanofilm anode. Energy dissipation as a function of charge range and charge speed have been presented for both nanowire and nanofilm andes. On the other hand, the initiation and propagation of crack in galvanostatic charge โ discharge cycle have been simulated using element failure method. Tensile strength is used as the crack initiation criteria, and the fracture energy and J-integral is used as the crack propagation criteria. Crack propagation direction is determined by the direction of first pricipal stress. When a crack exists in a nanowire, the dissipation by diffusion and plastic has been increased, apart from the dissipation by crack. The increase of plastic and dissipation energy dissipation owing to the existence of crack is ploted, and the value increases as the nanowire radius increases. Calculation has been performed for the initial center crack and initial surface crack case, and it is observed whereas the initial center crack tends to grow straightly, the initial surface crack tends to be vent owing to higher compressive stress in the inner part at discharging state.1 Introduction 1
1.1 Motivations 1
1.2 Research trends 2
2 Framework of diffusion-deformation couplig simulation 8
2.1 Diffusion-deformation coupling formulation 8
3 Anode design for energy-efficient battery charging 15
3.1 Simulation modeling 15
3.2 Energy dissipation 18
3.3 Validation of the present method 19
3.4 Effect of yield strength on energy dissipation 21
3.4.1 Spacial distribution of lithium concentration and stress 21
3.4.2 Effect of yield strength on energy dissipation and dissipation rate 23
3.4.3 Effect of boundary condition on energy dissipation 25
3.5 Effect of , , and on energy dissipation 27
3.5.1 Energy dissipation in nanowire 28
3.5.2 Energy dissipation in nanofilm 30
4 Crack initiation and propagation under Galvanostatic charging cycle in silicon nanowire 64
4.1 Element failure method 64
4.2 Simulation modeling 69
4.3 Results 71
4.3.1 Convergency of the solution with respect to the mesh density 71
4.3.2 Initial crack at the center of nanowire 71
4.3.3 Initial crack at the surface of nanowire 72
5 Conclusions 94
References 96Docto
Macroscopic Morphology Control of Mesoporous Inorganic Materials from Block Copolymer-Based Multiphase Polymer Blends
Doctor๊ตฌ์กฐ ๊ท์น์ฑ์ ๊ฐ์ง ๋ฉ์กฐ๋ค๊ณต์ฑ ๋ฌผ์ง์ ๋์ ๋นํ๋ฉด์ , ํฐ ๊ธฐ๊ณต๋ถํผ, ๊ธฐ๊ณต ํฌ๊ธฐ์ ๊ตฌ์กฐ์ ์กฐ์ ์ด ์ฝ๋ค๋ ํน์ง์ ๊ฐ์ง๊ณ ์์ด 1992๋
์ต์ด๋ก ๋ณด๊ณ ๋ ์ด๋๋ก ์ฐ๊ตฌ๊ฐ ํ๋ฐํ ์งํ๋๊ณ ์๋ค. ์ด๋ฌํ ํน์ง๋ค์ ๊ธฐ๋ฐ์ผ๋ก ๊ท์น์ฑ ๋ฉ์กฐ๋ค๊ณต์ฑ ๋ฌผ์ง์ ํก์ฐฉ์ , ์ด๋งค, ๋ถ๋ฆฌ๋ง, ์ฝ๋ฌผ์ ๋ฌ ๋ฐ ์๋์ง ์ ํ/์ ์ฅ ์ฅ์น ๋ฑ์ ์์ฉ ๋ถ์ผ์ ๋๋ฆฌ ํ์ฉ๋๊ณ ์๋ค.
๋ธ๋ก ๊ณต์คํฉ์ฒด๋ ๊ฐ ๋ธ๋ก์ด ์๋ก ์์ด์ง ์๋ ์ฑ์ง๋ก ์ธํด์ ๋๋
ธ๋ฏธํฐ ํฌ๊ธฐ์ ๋ค์ํ ๋๋
ธ ๊ตฌ์กฐ๋ก ์๊ธฐ์กฐ๋ฆฝํ๋ค. ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ํน์ ํ ๋ธ๋ก์๋ง ์์ผ ์ ์๋ ๋ฌด๊ธฐ ์ ๊ตฌ์ฒด๋ฅผ ํจ๊ป ์๊ธฐ์กฐ๋ฆฝ ํ๋ค๋ฉด ๋๋
ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ๋ ์ ยท๋ฌด๊ธฐ ํ์ด๋ธ๋ฆฌ๋ ์์ฌ๋ฅผ ํฉ์ฑํ ์ ์๋ค. ๊ณ ์จ ์ด์ฒ๋ฆฌ๋ฅผ ํตํด์ ์ ๊ธฐ๋ฌผ์ ์ ๊ฑฐํ๋ฉด ๋ฉ์กฐ ๋ค๊ณต์ฑ ๋ฌด๊ธฐ์์ฌ๋ฅผ ํฉ์ฑํ ์ ์๋ค. ๋ธ๋ก ๊ณต์คํฉ์ฒด๋ฅผ ์ด์ฉํ ๋ฐฉ๋ฒ์ ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ๋ถ์๋์ ๋ณํ์์ผ ์ฝ๊ฒ ๊ธฐ๊ณต ํฌ๊ธฐ์ ์กฐ์ ์ด ๊ฐ๋ฅํ๊ณ ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ๋ฌด๊ธฐ ์ ๊ตฌ์ฒด์ ๋น์จ์ ๋ฐ๋ผ์ ๊ธฐ๊ณต ๊ตฌ์กฐ์ ์กฐ์ ์ด ๊ฐ๋ฅํ๋ค. ํ์ง๋ง ๋ธ๋ก ๊ณต์คํฉ์ฒด๋ 2-100๋๋
ธ๋ฏธํฐ ํฌ๊ธฐ์ ๋ง์ดํฌ๋ก ์ ๋ถ๋ฆฌ๋ฅผ ํตํด์ ๋๋
ธ ๊ตฌ์กฐ๋ฅผ ํ์ฑํ๊ธฐ ๋๋ฌธ์ ๋งคํฌ๋ก ๊ตฌ์กฐ์ ๋ค๊ณต์ฑ ์
์์ ๊ธฐํํ์ ํ์ ์ ์ด์ ์์ด ํ๊ณ๊ฐ ์๋ค. ๊ธฐ์กด์ ๋ฐฉ์๋ค์ ์ถ๊ฐ์ ์ธ ์ฃผํ์ ์ฌ์ฉํ๋ ๋ณต์กํ ๊ณต์ ์ด ํ์ํ๊ฑฐ๋ ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ์ ์ด๊ฐ ์ด๋ ต๋ค๋ ๋จ์ ์ด ์๋ค. ๋ํ ํน์ ๋ฌผ์ง์๋ง ์ ์ฉํ ์ ์๊ธฐ ๋๋ฌธ์ ํ์ฉ๋๊ฐ ๋จ์ด์ง๋ค.
๋ณธ ๋ฐ์ฌ ํ์ ๋
ผ๋ฌธ์์๋, ์ธ๊ธํ ๋ฌธ์ ์ ๋ค์ ํด๊ฒฐํ ์ ์๋ ๊ฐ๋จํ๋ฉด์๋ ๋ฒ์ฉ์ ์ธ ์๋ก์ด ํฉ์ฑ ํ๋ซํผ์ ์ ์ํ์๋ค. ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ํ ์ข
๋ฅ ์ด์์ ๋จ์ผ์คํฉ์ฒด๋ก ๋ค์ฑ๋ถ๊ณ ๊ณ ๋ถ์ ๋ธ๋ ๋์ ์ ๊ฑฐ๋์ ์ด์ฉํ์์ผ๋ฉฐ, ์กธ-๊ฒ ํํ๊ณผ์ ์ตํฉ์ ํตํด์ ๋ฉ์กฐ๋ค๊ณต์ฑ ๋ฌผ์ง์ ๋งคํฌ๋ก ํ์์ ์ ์ดํ ์ ์๋ ์๋ก์ด ํฉ์ฑ๋ฒ์ ๊ฐ๋ฐํ๊ณ ์ ํ์๋ค(Chapter 1).
Chapter 2์์๋, ๋ฉ์กฐ๋ค๊ณต์ฑ ๊ตฌ์กฐ ๋ด๋ถ์ ๋งคํฌ๋ก ์
์๊ฐ ๊ฐ๋์ด์ ธ ์๋ ๋ค๊ธฐ๋ฅ์ฑ ๋งคํฌ๋ก-/๋ฉ์กฐ๊ตฌ์กฐ์ Nb2O5๋ฅผ ํฉ์ฑํ์๋ค. ํฉ์ฑํ ๋ ํ์ ์ ๊ตฌ์ฒด์ธ ์ ๊ธฐ ์ ๊ตฌ์ฒด(resol)์ ์ฐ์ฑ ๋ถ์๊ธฐ์์์ ๊ฐํ ๊ฐ๊ต ๋ฐ์์ ์ด์ฉํ์ฌ in-situ๋ก ๋ฉ์กฐ๋ค๊ณต์ฑ ๊ตฌ์กฐ์ ๋งคํฌ๋ก ๊ตฌ์กฐ๋ฅผ ๋์์ ํ์ฑํ์๋ค. ์ ๊ธฐ ์ ๊ตฌ์ฒด๋ ๋ฌด๊ธฐ ์ ๊ตฌ์ฒด์ ๊ฐํ ๋ฐฐ์๊ฒฐํฉ์ผ๋ก ๋งคํฌ๋ก ๊ตฌ์กฐ๋ฅผ ํจ๊ป ํ์ฑํ์ฌ ์ด์ฒ๋ฆฌ ํ์ ๋งคํฌ๋ก ์
์๊ฐ ํ์ฑ๋์๋ค. ์ด ๊ตฌ์กฐ๋ ๋ฉ์กฐ๋ค๊ณต ๊ตฌ์กฐ์ ๋์ ํ๋ฉด์ ๊ณผ ๋งคํฌ๋ก ์
์์ ๋น์ ์ฐ๋ ์ํค๋ ํจ๊ณผ๋ฅผ ๋์์ ๊ฐ์ง๊ณ ์์ด DSSC์ ์ฌ์ฉํ์ฌ ์ฑ๋ฅ์ด ํฅ์๋จ์ ๋ณด์ฌ์ฃผ์๋ค.
Chapter 3์์๋, ๋ฉ์กฐ๋ค๊ณต์ฑ ๋ฌด๊ธฐ ์
์์ ํฉ์ฑ๊ณผ ์
์ ๋ด๋ถ์ ๊ธฐ๊ณต ๋ฐฉํฅ ๋ฐ ์
์์ ํ์์ ์ ์ดํ๋ ์๋ก์ด ๋ฐฉ๋ฒ์ ๊ดํด์ ๊ธฐ์ ํ์๋ค. ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ๋จ์ผ์คํฉ์ฒด์ ์ ๊ฑฐ๋์ธ ์คํผ๋
ธ๋ฌ ์ ๋ถ๋ฆฌ๋ฅผ ์ด์ฉํ์ฌ ๋งคํฌ๋ก ์ ๋ถ๋ฆฌ๋ฅผ ์ ๋ํ์๊ณ , ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ์๊ธฐ ์กฐ๋ฆฝ์ ํตํด์ ๋๋
ธ ๊ตฌ์กฐ๋ฅผ ํ์ฑํ์๋ค. ์ด๋ฅผ ํตํด์ ๋จ์ผ์คํฉ์ฒด ๋งคํธ๋ฆญ์ค ๋ด๋ถ์ ๋ฉ์กฐ ๋ค๊ณต์ฑ ๊ตฌ์กฐ๋ฅผ ๊ฐ๋ ๋ฌด๊ธฐ ์์ฌ๊ฐ ๊ฐํ๊ฒ ๋๊ณ ํ๋ฉด์๋์ง์ ์ต์ํ๋ฅผ ์ํด ๊ตฌํ์ ์
์ ํํ๋ก ํ์ฑ๋๋ค. ๋ํ ๋งคํธ๋ฆญ์ค๋ก ์ฌ์ฉ๋๋ ๋จ์ผ์คํฉ์ฒด์ ๋ฐ๋ผ์ ๊ณ๋ฉด ์๋์ง๊ฐ ๋ณํํ๊ณ ์ด๋ฅผ ํตํด์ ๊ธฐ๊ณต์ ๋ฐฉํฅ์ ์ ์ดํ๊ณ ์
์์ ํ์์ ํธํํ์์ฒด๋ก ์กฐ์ ์ด ๊ฐ๋ฅํ๋ค. ๋ณธ ์ฐ๊ตฌ์์ ์ ์ํ๋ ๋ฐฉ๋ฒ์ ๊ธฐ๊ณต์ ๊ตฌ์กฐ, ๋ฐฉํฅ, ํฌ๊ธฐ(15-44 nm), ์
์์ ํ์, ์
์์ ํฌ๊ธฐ(0.6-3 ฮผm), ๋ฌผ์ง์ ์กฐ์ฑ ์ ์ด๊ฐ ๊ฐ๋ฅํ๋ค.
๋ง์ง๋ง์ผ๋ก ์ผ์ฑ๋ถ๊ณ ๊ณ ๋ถ์ ๋ธ๋ ๋์ ์ ๊ฑฐ๋์ ์ด์ฉํ์ฌ ๋ฉ์กฐ๋ค๊ณต์ฑ ์
์์ ๋ดยท์ธ๋ถ ๋งคํฌ๋ก ๋๋ฉ์ธ์ ์ ์ดํ๋ ์๋ก์ด ํฉ์ฑ๋ฒ์ ๊ฐ๋ฐํ์๋ค. ์ธ ์ข
๋ฅ์ ๊ณ ๋ถ์ ์ฌ์ด์ ํผ์ง ๊ณ์(spreading coefficient)์ ๊ด๊ณ์ ๋ฐ๋ฅธ ๊ตฌ์กฐ ๋ณํ๋ฅผ ์ด์ฉํ์ฌ ์ฝ์ด-์(core-shell) ๊ตฌ์กฐ์ ์ผ๋์ค(Janus) ๊ตฌ์กฐ๋ฅผ ํ์ฑํ์๋ค. ์ด๋ฅผ ์ด์ฉํ์ฌ ์์ด ๋น ๊ตฌ์กฐ(hollow)์ ๋ฉ์กฐ๋ค๊ณต์ฑ ์
์์ ๊ทธ๋ฆ ํํ(bowl-like) ๋ฉ์กฐ๋ค๊ณต์ฑ ์
์๋ฅผ ํฉ์ฑํ์๋ค. ์
์์ ๋ดยท์ธ๋ถ ๋งคํฌ๋ก ์์ญ์ ํ์ฑํ๋ ๋จ์ผ์คํฉ์ฒด์ ์์ ๋ฐ๋ผ์ ๋งคํฌ๋ก ์์ญ์ ํฌ๊ธฐ๋ฅผ ์ฝ๊ฒ ์กฐ์ ํ์๋ค. ์ด๋ฌํ ๋ฐฉ๋ฒ์ ๊ณ ๋ถ์์ ๊ณ ๋ถ์ ์ฌ์ด์ ๊ณ๋ฉด์์ ๋ฉ์กฐ๋ค๊ณต์ฑ ๊ตฌ์กฐ๊ฐ ํ์ฑ๋จ์ ๋ณด์ฌ์ฃผ์๊ณ ์ด๋ฅผ ํตํด์ ๋ณด๋ค ๋ณต์กํ ํํ์ ๋ฉ์กฐ๋ค๊ณต์ฑ ์
์ ํฉ์ฑ๋ฒ์ ์ ์ํ์๋ค.
๋ณธ ์ฐ๊ตฌ๋ ๋ค์๊ณผ ๊ฐ์ ์ธก๋ฉด์์ ํ์ ์ ์ผ๋ก ์ค์ํ ๊ฐ์น๊ฐ ์๋ค. (1) ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ์๊ธฐ ์กฐ๋ฆฝ์ ํตํ ๋ฉ์กฐ๋ค๊ณต์ฑ ๋ฌผ์ง ํฉ์ฑ ์์ญ์ ๋ณด๋ค ๋ณต์กํ ๊ตฌ์กฐ์ ์
์์ ํ์ ์ ์ด๋ผ๋ ์๋ก์ด ๋ฐฉํฅ์ฑ์ ์ ์ํ์๋ค. (2)๋งคํฌ๋ก ์ ๋ถ๋ฆฌ๋ฅผ ๋ธ๋ก ๊ณต์คํฉ์ฒด์ ์๊ธฐ ์กฐ๋ฆฝ๊ณผ ๊ฒฐํฉํ์ฌ ๋๋
ธ/๋งคํฌ๋ก ๊ตฌ์กฐ๋ฅผ ๋์์ ์ ์ดํ์๊ณ , ์ด๋ฅผ ํตํด์ ๋ฉ์กฐ๋ค๊ณต์ฑ ์์ฌ์ ์
์ํ์ ์
์์ ํ์ ์ ์ดํ๋ ๊ฒ์ ์ ์ฉํ ์ ์์์ ๋ณด์๋ค. (3) ๋ณธ ์ฐ๊ตฌ์์ ์ ์ํ ์ ๊ทผ๋ฒ์ ์ฌ๋ฃ ๊ณผํ, ๊ณ ๋ถ์ ๊ณผํ, ๋๋
ธ ๋ฌผ์ง ํฉ์ฑ ๋ฑ ๋ค์ํ ๋ถ์ผ๊ฐ ์ตํฉ๋ ์ฐ๊ตฌ๋ก ๊ด๋ จ ๋ถ์ผ์ ์ฐ๊ตฌ์๋ค์๊ฒ ์๋ก์ด ํต์ฐฐ์ ์ ๊ณตํ ์ ์์ผ๋ฆฌ๋ผ ๊ธฐ๋๋๋ค.Ordered mesoporous materials have been attracted great attention in the past decades due to their unique properties and functionalities such as high surface area, large pore volume, tunable pore size and structures. Therefore, ordered mesoporous inorganic materials have been used in a variety of application including adsorption, catalysis, separation, drug delivery, and energy conversion and storages.
Block copolymers (BCP) directed self-assembly is one of the promising methods for the preparation of mesoporous inorganic materials with tunable meso scale architectures. However, the BCP-directed self-assembly based approach still remains several problems in controlling the macro structure due to the limit of meso scale size. Previous most approaches employ complicated, tedious multi-step process or the integration of multiple templates or is materials-specific. (Chapter 1).
The primary objective of Ph.D. thesis is development of simple, and versatile synthesis for mesoporous materials with controlled macrostructures by using BCP directed self-assembly of multiphase polymer blends. To this end, we combine inorganic sol-gel chemistry, synthetic polymer chemistry, and phase behavior of blends.
In chapter 2, We report simple synthesis of macro- and mesostructured Nb2O5 that have functional submicrometer-sized particles (macrodomain) embedded in mesoporous frameworks (nanodomain). Resol can macrophase-separate by self-polymerization and co-assemble with niobia sol into mesostructured frameworks. The resultant materials increase the power conversion efficiency due to light-scattering capability of submicrometer-sized particles.
In chapter 3, we report how combining mesoscale block copolymer (BCP) directed inorganic materials self-assembly and macroscale spinodal decomposition (SD) can be employed in multicomponent BCP/hydrophilic inorganic precursor blends with homopolymers to prepare mesoporous inorganic particles with controlled meso- and macrostructures. The homogeneous multicomponent blend solution undergoes dual phase separation upon solvent evaporation. Microphase-separated (BCP/inorganic precursor)-domains are confined within the macrophase-separated majority homopolymer matrix, being self-organized toward particle shapes that minimize the total interfacial area/energy. The pore orientation and particle shape (solid spheres, oblate ellipsoids) are tailored by changing the kind of homopolymer matrix and associated enthalpic interactions. The present approach enables a high degree of control over pore structure, orientation, and size (15-44 nm), particle shape, particle size (0.6-3 ยตm), and chemical composition (e.g., aluminosilicates, carbon, and metal oxides).
Finally, we develop a simple synthesis approach toward hollow and bowl-like mesoporous inorganic particles by combining block copolymer (BCP) directed self-assembly and phase migration in multicomponent polymer blends. The homogenous blend solution spontaneously self-assembles to core-shell structures or anisotropically stacked particles upon solvent evaporation. BCP/AS phases act as compatibilizer, thus these phases aggregate and self-assemble to form mesoporous structures at the polymer-polymer interfaces. Pyrolysis yields discrete hollow and bowl-like mesoporous particles.
This thesis is of particular importance because it (i) provides a new direction for the BCP-based synthesis of inorganic materials with complex porous structures; (ii) shows that unique phase behavior of polymer blends can be exploited for the design of mesoporous inorganic materials with various morphologies; and therefore (iii) provides an insight into synthetic approaches for the researchers in materials science and polymer science
- โฆ