26 research outputs found

    ๋‰ด๋กœ๋ชจํ”ฝ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„์„ ์œ„ํ•œ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2021.8. ํ™ฉ์ฒ ์„ฑ.์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์€ ์ƒ๋ฌผํ•™์  ๊ด€์ฐฐ์— ๊ธฐ๋ฐ˜ํ•œ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ๋กœ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๊ณ„์‚ฐ์ด ๊ฐ€๋Šฅํ•œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์—์„œ ๋‰ด๋Ÿฐ์˜ ๋‚ด๋ถ€ ์ƒํƒœ๋Š” ๋‹ค๋ฅธ ๋‰ด๋Ÿฐ์—์„œ ์˜ค๋Š” ์ŠคํŒŒ์ดํฌ์™€ ์‹œ๊ฐ„ ์ •๋ณด์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋ฉฐ ๋‰ด๋Ÿฐ์˜ ๋ง‰์ „์œ„๊ฐ€ ํŠน์ • ์ž„๊ณ„๊ฐ’์„ ์ดˆ๊ณผํ•  ๊ฒฝ์šฐ ์ŠคํŒŒ์ดํฌ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋‰ด๋Ÿฐ์˜ ์ŠคํŒŒ์ดํฌ๋Š” ์‹œ๊ณต๊ฐ„ ์ƒ์—์„œ ๋“œ๋ฌผ๊ฒŒ ๋ฐœ์ƒํ•˜๋ฉฐ ์ด๋ฒคํŠธ์— ๊ธฐ๋ฐ˜ํ•ด ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•œ๋‹ค. ์ •๋ณด ๋ฐ€๋„๊ฐ€ ๋†’์€ ์ŠคํŒŒ์ดํฌ์— ๊ธฐ๋ฐ˜ํ•œ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์€ ์ˆœ์—ด๊ณผ ๊ฐ™์ด ์‹œ๊ณต๊ฐ„ ์ƒ์— ๋ถ„ํฌ๋œ ์ŠคํŒŒ์ดํฌ ํŒจํ„ด์˜ ํšจ๊ณผ์ ์ธ ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง ๊ณ„์‚ฐ์„ ์œ„ํ•ด์„œ๋Š” ๋งค ๋‹จ์œ„ ์‹œ๊ฐ„๋งˆ๋‹ค ๋ง‰ ์ „์œ„์™€ ๊ฐ™์€ ๋‚ด๋ถ€ ์ƒํƒœ ์—…๋ฐ์ดํŠธ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ ์ด๋Š” ๋งŽ์€ ๊ณ„์‚ฐ ์‹œ๊ฐ„์„ ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ํšจ์œจ์ ์ธ ์ŠคํŒŒ์ดํ‚น ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‰ด๋Ÿฐ์˜ ๋‚ด๋ถ€ ์ƒํƒœ ์—…๋ฐ์ดํŠธ๊ฐ€ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌ๋˜์–ด์•ผ ํ•œ๋‹ค. ๋ถ„์‚ฐ ํ”„๋กœ์„ธ์„œ์™€ ๋กœ์ปฌ ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋‰ด๋กœ๋ชจํ”ฝ ํ•˜๋“œ์›จ์–ด๋Š” ๋ณ‘๋ ฌ ๊ณ„์‚ฐ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ์ง€์—ญ ์ •๋ณด๋ฅผ ํ†ตํ•ด ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์„ ํ•™์Šต์‹œํ‚ฌ ๊ฒฝ์šฐ ๊ทธ ํšจ์œจ์„ฑ์ด ๊ทน๋Œ€ํ™”๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฒ”์šฉ์ ์ธ ์ด๋ฒคํŠธ์™€ ์ง€์—ญ ์ •๋ณด์— ๊ธฐ๋ฐ˜ํ•œ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง ํ•™์Šต ๋ฐฉ๋ฒ•์€ ์•„์ง ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฉฐ ํŠนํžˆ, ์—ฐ๊ด€ ๋ฆฌ์ฝœ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง ์ด๋ค„์ง€์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹จ์ผ ๋‹จ๊ณ„ ์˜ˆ์ธก ๋ฐ ์‹œํ€€์Šค ๊ฐ„ ์˜ˆ์ธก, ์ฆ‰ ์—ฐ๊ด€ ๋ฆฌ์ฝœ์ด ๊ฐ€๋Šฅํ•œ n-SPSNN (nth order-predicting SNN)์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋Šฅ์˜ ํ•ต์‹ฌ์œผ๋กœ, LbAP (learning by backpropagating action potential) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. LbAP ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ (i) ์‹œ๋ƒ…์Šค ํ›„ ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ํ•™์Šต (ii) ์‹œ๊ฐ„์  ๋กœ์ปฌ ๋ฐ์ดํ„ฐ๋งŒ ์‚ฌ์šฉ iii) ๊ฒฝ์Ÿ์œผ๋กœ ์ธํ•œ ๊ฐ€์ค‘์น˜ ์ •๊ทœํ™” ํšจ๊ณผ (iv) ๋น ๋ฅธ ํ•™์Šต์˜ ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ LbAP ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋กœ์ปฌ ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•ด ์ „์ฒด SPSNN์— ๋Œ€ํ•œ ํ†ตํ•ฉ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. SPSNN์˜ ํ•™์Šต ๋Šฅ๋ ฅ์€ ์ฃผ๋กœ ์€๋‹‰์ธต ๋‰ด๋Ÿฐ์˜ ์ˆ˜ h์— ์˜ํ•ด ๊ฒฐ์ •๋œ๋‹ค. ์€๋‹‰ ๋‰ด๋Ÿฐ ์ˆ˜ h๊ฐ€ ํ•™์Šต ์‹œํ€€์Šค ๊ธธ์ด l์˜ ๋‘ ๋ฐฐ๋ณด๋‹ค ํด ๋•Œ ์‹œํ€€์Šค ์˜ˆ์ธก ์ •ํ™•๋„๋Š” ์ตœ๋Œ€ ๊ฐ’ (~ 1)์— ๋„๋‹ฌํ•œ๋‹ค. ๋˜ํ•œ SPSNN์€ ์ตœ์‹ ์˜ ์‹œํ€€์Šค ํ•™์Šต ๋„คํŠธ์›Œํฌ์ธ LSTM (long short-term memory) ๋ฐ GRU (gated recurrent unit)์— ๋น„ํ•ด ์ž…๋ ฅ ์ธ์ฝ”๋”ฉ ์˜ค๋ฅ˜์— ๋Œ€ํ•œ ๋†’์€ ๋‚ด์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์„ฑ๊ณต์ ์ธ ํ•™์Šต์„ ์œ„ํ•ด ํ•„์š”ํ•œ SPSNN ์‹œ๋ƒ…์Šค ๋™์ž‘ ์ˆ˜์™€ LSTM ๋ฐ GRU์˜ ํ–‰๋ ฌ ๊ณฑ ์ˆ˜๋ฅผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, SPSNN์€ ๋‹ค๋ฅธ ๋‘ ๋„คํŠธ์›Œํฌ์— ๋น„ํ•ด ์•ฝ 100๋ฐฐ์˜ ํšจ์œจ์„ฑ์„ ๋ณด์˜€๋‹ค. SPSNN์˜ ๋†’์€ ํšจ์œจ์„ฑ์€ LbAP ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ธฐ์ธํ•˜๋Š” SPSNN์˜ ๋น ๋ฅธ ํ•™์Šต์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋‰ด๋กœ๋ชจํ”ฝ ํ•˜๋“œ์›จ์–ด์— ์ €ํ•ญ ์Šค์œ„์น˜์™€ ๊ฐ™์€ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ ์šฉํ•  ๊ฒฝ์šฐ ๋”์šฑ ํšจ์œจ์ ์ธ ์‹ ๊ฒฝ๋ง ํ•™์Šต์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ €ํ•ญ ์Šค์œ„์น˜ ์–ด๋ ˆ์ด์˜ ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ์…ˆ์€ ์‹ ๊ฒฝ๋ง์—์„œ์˜ ์ŠคํŒŒ์ดํฌ ์ „ํŒŒ ๊ณผ์ •๊ณผ ์œ ์‚ฌํ•˜๋‹ค. ์ž…๋ ฅ ์ „์•• ๋ฒกํ„ฐ์— ๋Œ€ํ•œ ์ „๋ฅ˜ ์‘๋‹ต์„ ์ธก์ •ํ•จ์œผ๋กœ์จ ๋‰ด๋กœ๋ชจํ”ฝ ํ•˜๋“œ์›จ์–ด์—์„œ์˜ ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณฑ์…ˆ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด์ง„ ์ €ํ•ญ ์Šค์œ„์น˜ ์–ด๋ ˆ์ด๋กœ ์ธ๊ณต ์‹œ๋ƒ…์Šค ์–ด๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•  ๊ฒฝ์šฐ, ๊ธฐ์กด ๋„คํŠธ์›Œํฌ์—์„œ์˜ ํ–‰๋ ฌ-๋ฒกํ„ฐ ๊ณ„์‚ฐ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•ด ๊ณ„์‚ฐ ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์€ ์‹œ๋ƒ…์Šค ๊ฐ€์ค‘์น˜๋ฅผ ์ €์žฅํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์ค‘ ๋น„ํŠธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Š” ์ด์ง„ ์ €ํ•ญ ์–ด๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๋‰ด๋กœ๋ชจํ”ฝ ํ•˜๋“œ์›จ์–ด์˜ ์‹œ๋ƒ…์Šค ์–ด๋ ˆ์ด ๊ตฌํ˜„์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ๋น„ํŠธ ์ •๋ฐ€๋„๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  ๋ณต์žกํ•œ ํŒจํ„ด ์ธ์‹ ์ž‘์—… ์‹œ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์˜ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์ง„ ์‹œ๋ƒ…์Šค ๊ฐ€์ค‘์น˜ (-1, 1)๋ฅผ ๊ฐ€์ง„ ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ๊ฐ€์ค‘์น˜ ์ด์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. eWB (event-based weight binarization algorithm for spiking neural networks) ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ์–ด์ง„ ์ œ์•ฝ ๋‚ด์—์„œ ๋งค๊ฐœ ๋ณ€์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๋ผ๊ทธ๋ž‘์ฃผ ์Šน์ˆ˜๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. eWB ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ (i) ์ง€์—ญ ์ •๋ณด๋งŒ์„ ํ†ตํ•ด ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ์ ์ฐจ์  ๊ฐ€์ค‘์น˜ ์ด์ง„ํ™” (ii) eRBP (event-driven random backpropagation)์™€ ๊ฐ™์€ ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์™„์ „ํ•œ ํ˜ธํ™˜์„ฑ (iii) ์ด์ง„ ๊ฐ€์ค‘์น˜ ์ œํ•œ ์กฐ๊ฑด์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ๊ฐ€์ค‘์น˜ ์ œํ•œ ์กฐ๊ฑด์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด eWB์™€ eRBP๋ฅผ ๊ฒฐํ•ฉํ•œ ์ด์ง„ ๊ฐ€์ค‘์น˜๋ฅผ ํ•™์Šตํ•˜๋Š” ๋‹จ์ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ eWB-eRBP ๊ตฌํ˜„ํ–ˆ๋‹ค. ์™„์ „ ์—ฐ๊ฒฐ์„ ๊ฐ€์ง€๋Š” ์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง์—์„œ eWB-eRBP๋ฅผ MNIST๋ฅผ ํ•™์Šต์‹œ์ผฐ์„ ์‹œ 95.35%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ๋‹ค.Spiking neural networks (SNNs) are believed to offer solutions to biologically inspired and energy-efficient computation. SNNs are dynamics models that process and convey data by means of asynchronous spike events. The spikes are sparse in time and space and have high information content. The rich dynamics of SNNs enable the effective learning of complex spatiotemporal firing patterns in a dynamic domain. However, internal state updates, e.g., membrane potential, are required every timestep, which requires a lot of computation time. Thus, the internal state updates of neurons must be processed in parallel for efficient spiking simulation. Distributed processors and local memories enable this parallel computation in dedicated neuromorphic hardware. Event-based weight update using local data can maximize the computational efficiency of neuromorphic hardware. However, the universal SNN learning algorithm based on the event and local data is still missing, especially associative recall. In this paper, we introduce an nth order sequence-predicting SNN (n-SPSNN), which is capable of single-step prediction and sequence-to-sequence prediction, i.e., associative recall. As a key to these capabilities, we propose a new learning algorithm, named the learning by backpropagating action potential (LbAP) algorithm, which features (i) postsynaptic event-driven learning, (ii) access to topological and temporal local data only, (iii) competition-induced weight normalization effect, and (iv) fast learning. Most importantly, the LbAP algorithm offers a unified learning framework over the entire SPSNN based on local data only. The learning capacity of the SPSNN is mainly dictated by the number of hidden neurons h; its prediction accuracy reaches its maximum value (~1) when the hidden neuron number h is larger than twice training sequence length l, i.e., h โ‰ฅ 2l. Another advantage is its high tolerance to errors in input encoding compared to the state-of-the-art sequence learning networks, namely long short-term memory (LSTM) and gated recurrent unit (GRU). Additionally, its efficiency in learning is approximately 100 times that of LSTM and GRU when measured in terms of the number of synaptic operations until successful training, which corresponds to multiply-accumulate operations for LSTM and GRU. This high efficiency arises from the higher learning rate of the SPSNN, which is attributed to the LbAP algorithm. Applying a nonvolatile memory to neuromorphic hardware leverage the computational efficiency in matrix-vector multiplication. Resistance switch is a promising candidate for nonvolatile memory. The binary resistance switch array implements efficient matrix-vector multiplication by measuring the output current vector to the applied input voltage. The spike propagation in SNNs can be applied to the matrix-vector multiplication in the resistive switch array. Thus, the parallel computation can be accelerated when implementing an artificial synapse array with a binary resistance switch array. However, SNNs require synaptic weights with multi-bit precision, which is not suitable for neuromorphic hardware using binary resistance switches. Also, using multi-bit precision on neuromorphic hardware increases the memory footprint and reduces computational efficiency. In this regard, we propose a novel event-based weight binarization (eWB) algorithm for SNNs with binary synaptic weights (-1, 1). The eWB algorithm is based on the Lagrange multiplier method, which optimizes parameters within given constraints. The algorithm features (i) event-based asymptotic weight binarization using local data only, (ii) full compatibility with event-based learning algorithms (e.g., spike timing-dependent plasticity and event-driven random backpropagation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning binary weights to generate correct classifications. Fully connected SNNs were trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST.1. Introduction 1 1.1. Spiking neural networks (SNNs) 1 1.2. Dedicated hardware for spiking neural network 4 1.3. Bibliography 8 2. Literature 10 2.1. Sequence-predicting SNN 10 2.2. Binarized SNN 13 2.3. Bibliography 15 3. SPSNN: nth order sequence-predicting spiking neural network 18 3.1. Introduction 18 3.2. Sequence-predicting spiking neural network and learning algorithm 20 3.2.1. Sequecne prediction principle and network architecture 20 3.2.2. Learing by backpropagating action potentail (LbAP) algorithm 24 3.2.3. Training method and capabiltiy evaluation in detail 28 3.3. Results 31 3.3.1. Sequene-prediction capacity 31 3.3.2. Associative recall (sequence-to-sequence prediction) 38 3.3.3. Robustness of learning and inference to variability in sequence 40 3.3.4. Learning efficiency 44 3.4. Conclusion 47 3.5. Appendix 49 3.6. Bibliography 51 4. eWB: Event-based weight binarization algorithm for spiking neural networks 54 4.1. Introduction 54 4.2. eWB algorithm 55 4.2.1. Lagrange multiplier method 55 4.2.2. eWB algorithm 57 4.2.3. eWB-eRBP algorithm 58 4.2.4. Non-optimal weight binarization algorithm 62 4.3. Results 62 4.3.1. Classification accuracy 63 4.3.2. Weight binarization 67 4.3.3. Computational complexity 69 4.4. Discussion 73 4.5. Conclusion 76 4.6. Appendix 76 4.7. Bibliography 80 5. Conclusion 82 Abstract (in Korean) 84๋ฐ•
    corecore