3 research outputs found

    ๊ฐ•ํ™”ํ•™์Šต์„ ์ด์šฉํ•œ ํ™•๋ฅ ๊ธฐ๋ฐ˜ ์ถ”์ -ํšŒํ”ผ ๊ฒŒ์ž„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2011.2. ๊น€ํ˜„์ง„.Maste

    ๋‹ค์ค‘ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์˜ ์ด๋™ ๊ณ„ํš ๋ฐ ํ–‰๋™ ์กฐ์ •์„ ์œ„ํ•œ ์ ‘๊ทผ๋ฒ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2014. 8. ๊น€ํ˜„์ง„.๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์ค‘ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์˜ ํ–‰๋™ ์กฐ์ •์„ ์œ„ํ•œ ํ˜‘์—… ์•„ํ‚คํ…์ฒ˜, ์ž„๋ฌดํ• ๋‹น, ๊ฒฝ๋กœ๊ณ„ํš, ํ–‰๋™ํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ๋ฌด์ธ ์ „ํˆฌ ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜์˜€๋‹ค. ๋‹ค์ค‘ ๋กœ๋ด‡์œผ๋กœ ๊ตฌ์„ฑ๋œ ๋ฌด์ธ ์ „ํˆฌ ์‹œ์Šคํ…œ์ด ์‹œ์‹œ๊ฐ๊ฐ ๋ณ€ํ™”ํ•˜๋Š” ์ „์‹œ์ƒํ™ฉ์—์„œ ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•˜์—ฌ ํ†ตํ•ฉ์ ์ธ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฏธ๋ฆฌ ์ง€์ •๋œ ์ž„๋ฌด์˜ ํŠน์„ฑ ๋ฐ ์‹ค์ œ์˜ ์ƒํ™ฉ๋ณ„๋กœ ์ ์ ˆํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋จผ์ € ์ง€ํœ˜ํ†ต์ œ ์ฐจ๋Ÿ‰, ์ง€์ƒ ์ „ํˆฌ ๋กœ๋ด‡, ๊ฐ์‹œ์ •์ฐฐ ๊ณต์ค‘ ๋กœ๋ด‡ ๊ฐ„ ํ˜‘์—… ์•„ํ‚คํ…์ฒ˜๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋ถ„์‚ฐํ˜• ์ž„๋ฌด๊ณ„ํš ๊ธฐ๋ฒ•์ธ ํ•ฉ์˜ ๊ธฐ๋ฐ˜ ๋ฒˆ๋“ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ง€์ƒ ๋กœ๋ด‡๋“ค์„ ์ ์ ˆํ•œ ์ž„๋ฌด์ง€์ (ํ‘œ์ )์œผ๋กœ ํ• ๋‹นํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ์ง€์ƒ ๋กœ๋ด‡ ๋ฐ ํ‘œ์ ๋“ค์€ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์„œ๋กœ ๋‹ค๋ฅธ ์ž„๋ฌด์ˆ˜ํ–‰ ๋Šฅ๋ ฅ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋“ค ๊ฐ„์˜ ์ด์งˆ์„ฑ์„ ๋ฐ˜์˜ํ•˜๋Š” ์ ์ˆ˜ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ž„๋ฌด๊ณ„ํš ์‹œ ๋ฐ˜์˜ํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐ•ํ™”ํ•™์Šต๊ณผ ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์—ํ”ผ์†Œ๋“œ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๊ณ , ์ด ๊ธฐ๋ฒ•์„ ์ ์ˆ˜ํ–‰๋ ฌ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•˜์—ฌ ์ง€์ƒ ๋กœ๋ด‡ํŒ€์˜ ์ƒ์กด ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ์ตœ์ ์˜ ๊ต์ „ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜์˜€๋‹ค. ์ž„๋ฌด์ง€์  ๊ฐ„ ๋‹ค์ค‘ ๋กœ๋ด‡์˜ ๊ฒฝ๋กœ๊ณ„ํš ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์ƒ์˜ ์†์ž„์ˆ˜ ๊ธฐ๋™ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์‹ค์‹œ๊ฐ„ ๋ถ„์‚ฐํ˜• ๊ฒฝ๋กœ๊ณ„ํš ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฐ€์ƒ์˜ ์†์ž„์ˆ˜ ๊ธฐ๋™ ๊ธฐ๋ฒ•์€ ๊ณค์ถฉ์ด ๋จน์ž‡๊ฐ์„ ์ซ“์•„๊ฐˆ ๋•Œ ์†์ž„์ˆ˜ ๊ธฐ๋™์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ์˜๊ฐ์„ ์–ป์–ด ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์œผ๋กœ ์ผ๋ฐ˜์ ์ธ ๋น„์„ ํ˜• ๊ตฌ์†์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ๊ถค์  ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๊ฒฝ๋กœ ์ œ์–ด ๋งค๊ฐœ๋ณ€์ˆ˜๋งŒ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฌธ์ œ๋กœ ๋ณ€ํ™˜์‹œ์ผœ ๋ฌธ์ œ์˜ ์ฐจ์›์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฒฝ๋กœ ์ œ์–ด ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๊ฒฝ๋กœ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋„์‹ฌํ™˜๊ฒฝ์—์„œ์˜ ์ข…๋ง ์‹œ๊ฐ„ ๋ฐ ์ง„์ž… ๊ฐ ๊ตฌ์†์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ๋ž‘๋ฐ๋ถ€ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š”๋ฐ ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์•ž์„œ ์ œ์•ˆ๋œ ๋‹ค์ค‘ ๋กœ๋ด‡ ์ž„๋ฌด๊ณ„ํš ๋ฐ ๊ฒฝ๋กœ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜๋ฉด ๋ณต์žกํ•œ ์ „์žฅ์ƒํ™ฉ์—์„œ์˜ ๋กœ๋ด‡์˜ ํ–‰๋™์–‘์‹์„ ์‰ฝ๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ฐ ๋กœ๋ด‡์ด ์ƒํ™ฉ์— ๋งž๊ฒŒ ์ ์ ˆํ•œ ํ–‰๋™์–‘์‹์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ํ–‰๋™ ์กฐ์ • ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด ๋ถ„์‚ฐํ˜• ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๊ณ  ๋ฌธ์ œ์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ•จ์ˆ˜ ๊ทผ์‚ฌํ™”์™€ ํ™•์‚ฐ ์ ์‘ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๋ถ€๋ถ„๋ณ„ ์š”์†Œ ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋Š” ์ „์žฅ์ƒํ™ฉ์—์„œ ๋‹ค์ค‘ ๋กœ๋ด‡ ๊ทธ๋ฃน์˜ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.This thesis suggests a cooperative control architecture and algorithms for mission planning, path planning, and learning for behavior coordination in heterogeneous multi-robot systems. We apply our proposed algorithms to unmanned combat systems. To achieve integrated group objectives of unmanned combat systems consisting of heterogeneous multiple robots in ever-changing battlefield situations, each robot has to make a decision properly by considering characteristics of the predefined mission and real situations. To this end, we first design a cooperative control architecture of a command and control vehicle, unmanned ground vehicles, and unmanned aerial vehicles. We assign the mission points (the threats' location) to the ground robots by employing a decentralized task assignment called consensus-based bundle algorithm (CBBA). Here, we use a scoring matrix reflecting heterogeneity when the robots plan the mission because the different types of ground robots and threats have different capabilities for performing the mission according to their types. In addition, we suggest an episodic parameter optimization method using reinforcement learning (RL) and particle swarm optimization (PSO). This method is applied to optimize the scoring matrix, and we finally establish the optimal engagement strategy to maximize the team survivability of the ground robots. To solve a path planning problem between the robot and the target, we propose a decentralized trajectory optimization method using virtual motion camouflage (VMC) and PSO. VMC is inspired from biology, in which an insect actively camouflages its motion while tracking a prey. By using VMC a typical nonlinear constrained trajectory optimization problem can be transformed to an optimization problem of path control parameters (PCPs), so it reduces the dimension of the original problem. We employ PSO to optimize PCPs. The proposed algorithm called decentralized VMCPSO is applied to solve rendezvous problems considering terminal time and angle constraints in an unban-like environment, and it is validated with simulations and an experiment. By utilizing the algorithms proposed above, we can easily implement behaviors of the robots in complex combat situations. Lastly, we propose a distributed multi-agent reinforcement learning algorithm in a semi-Markov Decision Process framework to solve a behavior coordination problem for making each robot select the most proper behavior in given situations. In order to address complexity issues, linear function approximation and diffusion adaptation have been employed. As a result, we can achieve the group objectives of the heterogeneous multi-robot systems in combat situations involving many uncertainties by using the proposed approaches.Abstract vi Table of Contents viii List of Tables xi List of Figures xii Chapter 1 Introduction 1 1.1 Literature Survey 3 1.2 Research Objectives and Contributions 6 1.3 Thesis Organization 8 2 Cooperative Mission of Multi-Robot Systems 9 2.1 Probabilistic Engagement Scenario 10 2.2 Multi-Robot Systems Architecture 11 2.3 Threat Map 19 2.4 Visibility Map 20 3 Multi-Robot Mission Planning 24 3.1 Mission Assignment 25 3.2 Optimization for Mission Assignment 28 3.3 Optimization Results 33 3.4 Analysis and Discussion 35 4 Multi-Robot Path Planning 37 4.1 Virtual Motion Camouflage 38 4.2 Extension to Multi-Robot Path Planning 46 4.3 Simulation Results 50 4.4 Experimental Results 63 4.5 Analysis and Discussion 66 5 Behavior Coordination 67 5.1 Design of Behaviors 68 5.2 Learning Framework 69 5.3 Distributed Multi-Agent Reinforcement Learning 76 5.4 Distributed MARL Applied to Multi-Robot Systems 81 5.5 Empirical Results 85 5.6 Analysis and Discussion 90 6 Conclusions 96 Abstract (in Korean) 106Docto
    corecore