4,646 research outputs found

    On the Construction of Radio Environment Maps for Cognitive Radio Networks

    Full text link
    The Radio Environment Map (REM) provides an effective approach to Dynamic Spectrum Access (DSA) in Cognitive Radio Networks (CRNs). Previous results on REM construction show that there exists a tradeoff between the number of measurements (sensors) and REM accuracy. In this paper, we analyze this tradeoff and determine that the REM error is a decreasing and convex function of the number of measurements (sensors). The concept of geographic entropy is introduced to quantify this relationship. And the influence of sensor deployment on REM accuracy is examined using information theory techniques. The results obtained in this paper are applicable not only for the REM, but also for wireless sensor network deployment.Comment: 6 pages, 7 figures, IEEE WCNC conferenc

    Linear Quadratic Stochastic Optimal Control Problems with Operator Coefficients: Open-Loop Solutions

    Full text link
    An optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic optimal control problems for mean-field stochastic differential equations. Open-loop solvability of the problem is investigated, which is characterized as the solvability of a system of linear coupled forward-backward stochastic differential equations (FBSDE, for short) with operator coefficients. Under proper conditions, the well-posedness of such an FBSDE is established, which leads to the existence of an open-loop optimal control. Finally, as an application of our main results, a general mean-field linear quadratic control problem in the open-loop case is solved.Comment: to appear in ESAIM Control Optim. Calc. Var. The original publication is available at www.esaim-cocv.org (https://doi.org/10.1051/cocv/2018013

    Complete spectral gap in coupled dielectric waveguides embedded into metal

    Full text link
    We study a plasmonic coupler involving backward (TM_01) and forward (HE_11) modes of dielectric waveguides embedded into infinite metal. The simultaneously achievable contradirectional energy flows and codirectional wavevectors in different channels lead to a spectral gap, despite the absence of periodic structures along the waveguide. We demonstrate that a complete spectral gap can be achieved in a symmetric structure composed of four coupled waveguides.Comment: 3 pages, 4 figure

    Field-effect mobility enhanced by tuning the Fermi level into the band gap of Bi2Se3

    Full text link
    By eliminating normal fabrication processes, we preserve the bulk insulating state of calcium-doped Bi2Se3 single crystals in suspended nanodevices, as indicated by the activated temperature dependence of the resistivity at low temperatures. We perform low-energy electron beam irradiation (<16 keV) and electrostatic gating to control the carrier density and therefore the Fermi level position in the nanodevices. In slightly p-doped Bi2-xCaxSe3 devices, continuous tuning of the Fermi level from the bulk valence band to the band-gap reveals dramatic enhancement (> a factor of 10) in the field-effect mobility, which suggests suppressed backscattering expected for the Dirac fermion surface states in the gap of topological insulators

    A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    Full text link
    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented
    corecore