5 research outputs found

    質譜術於尿液中ketamine及其新陳代謝體偵測之研究

    No full text
    摘要 本研究主要是探討利用液相層析質譜儀分離偵測尿液中ketamine及其主要代謝物norketamine和dehydronorketamine,並評估液相層析質譜儀之電灑游離法與大氣壓化學游離法之最佳游離化條件,以獲得最佳分析ketamine及其新陳代謝體之最佳游離化方式。同時討論不同游離化方式分析ketamine及其主要代謝物之線性範圍、偵測極限和再現性,並將此技術應用於真實樣品之分析。 由實驗的結果顯示,利用大氣壓化學游離法正離子模式結合選擇離子模式偵測ketamine及其兩個主要代謝物norketamine和dehydronorketamine可得到最佳的靈敏度。Ketamine及其主要新陳代謝體之線性範圍皆為0.75-100 μg/L,而ketamine的偵測極限為0.02 μg/L,norketamine的偵測極限為0.09 μg/L,dehydronorketamine的偵測極限為0.04 μg/L,其線性相關係數為0.9997-0.9999,相對標準偏差從4-7%。 對於真實樣品的分析可藉由利用0.2 μm的過濾裝置去除尿液中之基質,在經過液相層析質譜儀分離偵測。由實驗結果可知,利用此分析方式可應用於真實尿液中ketamine及其代謝物之偵測,所得結果可用於研究ketamine之藥物動力學及濫用ketamine者之檢測。目錄 摘要……………………………………………………………………….I 目錄………………………………………………………………..…….II 表次……………………………………………………………………..IV 圖次……………………………………………………………………...V 壹、緒論………………………………………………………………….1 1.1、Ketamine之簡介……………………………………………………1 1.2、Ketamine的藥理作用與代謝……………………………………….3 1.3、偵測ketamine及其代謝物的方法…………………………………7 1.4、質譜儀儀器原理……………………………………………………8 貳、實驗部分…………………………………………………………....17 2.1、藥品、實驗器材和儀器設備……………………………………..17 2.2、儀器………………………………………………………………..18 2.3、玻璃器具之矽烷化………………………………………………..19 2.4、藥品配置…………………………………………………………..20 2.5、ketamine及其代謝物於液相層析質譜儀中分析條件之探討 ……………………………………………………………………22 2.6、液相層析質譜儀參數之探討…………………………………….22 2.7、利用電灑游離法正離子模式和大氣壓化學游離法正離子模式 ,評估ketamine及其新陳代謝體之精密度……………………27 2.8、利用電灑游離法正離子模式,評估ketamine及其代謝體之線 性範圍、線性方程式、線性相關係數和偵測極限…………….28 2.9、利用大氣壓化學游離法正離子模式,評估ketamine及其代謝 體之線性範圍、線性方程式、線性相關係數和偵測極限…….29 2.10、尿液中ketamine、norketamine、dehydronorketamine之偵測..30 叁、結果與討論………………………………………………………...32 3.1、Ketamine、norketamine和dehydronorketamine標準品溶液之液 相層析質譜儀分析………………………………………………..32 3.2、液相層析質譜儀參數之探討…………………………………….42 3.3、利用液相層析質譜儀分析ketamine及其代謝物化合物之精 密度………………………………………………………………59 3.4、利用液相層析質譜分析ketamine及其代謝物之線性範圍、線 性方程式、線性相關係數及偵測極限值…………….…………64 3.5、尿液中ketamine、norketamine和dehydronorketamine之偵測.74 肆、結論………………………………………………………………..80 伍、參考資料…………………………………………………………..82 表次 表一、 電灑游離法正離子偵測模式偵測ketamine及其代謝物的最 佳條件…….…………………………………………………..51 表二 、大氣壓化學游離法正離子偵測模式偵測ketamine及其代謝 物的最佳條件………….……………………………………..61 表三 、液相層析質譜儀偵測ketamine及其新陳代謝體之精密度..63 表四、以液相層析質譜儀之電灑游離法正離子模式結合選擇離子模 式分析ketamine及其新陳代謝體之線性範圍、線性方程式 、線性相關係數及偵測極限………………………………….69 . 表五、以液相層析質譜儀之大氣壓化學游離法正離子模式結合選擇 離子模式分析ketamine及其新陳代謝體之線性範圍、線性 方程式、線性相關係數及偵測極限………………………….73 . 圖次 圖一、 ketamine、norketamine及dehydronorketamine之結構…………6 圖二、離子阱質量分析器………………………………………………11 圖三、電灑游離法正離子模式下形成離子的過程……………………13 圖四、大氣壓化學游離法在正離子模式下形成離子的過程………...16 圖五、以1 μg/mL之ketamine、norketamine和dehydronorketamine混 合標準溶液,經過液相層析管柱,以電灑游離法正離子模式分 析所得之層析圖(a)TIC (b) ketamine (m/z 238) (c) norketamine (m/z 224) (d) dehydronorketamine (m/z 222)…………………..35 圖六、經液相層析質譜儀以電灑游離法正離子模式偵測圖五中動相所 得之質譜圖……………………………………………………...36 圖七、經液相層析質譜儀以電灑游離法正離子模式偵測圖五中滯留時間6.57分鐘ketamine波峰所得質譜圖………………………..36 圖八、經液相層析質譜儀以電灑游離法正離子模式偵測圖五中滯留時間3.64分鐘norketamine波峰所得質譜圖…………………….37 圖九、經液相層析質譜儀以電灑游離法正離子模式偵測圖五中滯留時間3.12分鐘dehydronorketamine波峰所得質譜圖……………37 圖十、以1 μg/mL之ketamine、norketamine和dehydronorketamine 混合標準溶液,經過液相層析管柱,以大氣壓化學游離法正 離子模式分析所得之層析圖(a)TIC (b) ketamine (m/z 238) (c) norketamine (m/z 224) (d) dehydronorketamine (m/z 222)…….39 圖十一、經液相層析質譜儀以大氣壓化學游離法正離子模式偵測圖 十中動相所得之質譜圖……………………………………..40 圖十二、經液相層析質譜儀以 大氣壓化學游離法正離子模式偵測圖十中滯留時間6.51分鐘ketamine波峰所得質譜圖………40 圖十三、經液相層析質譜儀以大氣壓化學游離法正離子模式偵測圖 十中滯留時間3.44分鐘norketamine波峰所得質譜圖……41 圖十四、經液相層析質譜儀以大氣壓化學游離法正離子模式偵測圖十中滯留時間2.89分鐘dehydronorketamine波峰所得質譜圖..41 圖十五、不同噴灑電壓對於ketamine類電灑游離法偵測的影響…..45 圖十六、不同毛細管溫度對於ketamine類電灑游離法偵測的影響..46 圖十七、不同霧化氣體流速對於ketamine類電灑游離法偵測的影響 ………………………………………………………………48 圖十八、不同輔助氣體流速對於ketamine類電灑游離法偵測的影響 ………………………………………………………………50 圖十九、不同氣化溫度對於ketamine類大氣壓化學游離法偵測的 影響…………………………………………………………..53 圖二十、不同毛細管溫度對於ketamine類大氣壓化學游離法偵測 的影響………………………………………………………..55 圖二十一、不同放電電流對於ketamine類大氣壓化學游離法偵測 的影響………………………………………………………..56 圖二十二、不同霧化氣體流速對於ketamine類大氣壓化學游離法 偵測的影響………………………………………………..58 圖二十三、不同輔助氣體流速對於ketamine類大氣壓化學游離法 偵測的影響………………………………………………..60 圖二十四、經由液相層析質譜儀以電灑游離法正離子模式結合選擇 離子模式分析ketamine標準品之檢量線圖……………..66 圖二十五、經由液相層析質譜儀以電灑游離法正離子模式結合選擇 離子模式分析norketamine標準品之檢量線圖………….67 圖二十六、經由液相層析質譜儀以電灑游離法正離子模式結合選擇 離子模式分析dehydronorketamine標準品之檢量線圖…68 圖二十七、經由液相層析質譜儀以大氣壓化學游離法正離子模式結 合選擇離子模式分析ketamine標準品之檢量線圖……..70 圖二十八、經由液相層析質譜儀以大氣壓化學游離法正離子模式結 合選擇離子模式分析norketamine標準品之檢量線圖….71 圖二十九、經由液相層析質譜儀以大氣壓化學游離法正離子模式結 合選擇離子模式分析dehydronorketamine標準品之檢量 線圖………………………………………………………..72 圖三十、利用大氣壓化學游離法正離子模式偵測空白尿液所得之層 析圖 (a)TIC (b) ketamine (m/z 238) (c) norketamine (m/z 224) (d) dehydronorketamine (m/z 222)…………………………...75 圖三十一、利用大氣壓化學游離法正離子模式偵測含有ketamine 及其新陳代謝體的尿液所得之層析圖 (a)TIC (b) ketamine (m/z 238) (c) norketamine (m/z 224) (d)dehydronorketamine (m/z 222)…………………………………………………...76 圖三十二、經液相層析質譜儀以大氣壓化學游離法正離子模式偵測 圖三十一中動相所得之質譜圖…………………………..78 圖三十三、經液相層析質譜儀以 大氣壓化學游離法正離子模式偵測 圖三十一中滯留時間7.00分鐘波峰所得質譜圖………78 圖三十四、經液相層析質譜儀以大氣壓化學游離法正離子模式偵測 圖三十一中滯留時間3.53分鐘波峰所得質譜圖……….79 圖三十五、經液相層析質譜儀以大氣壓化學游離法正離子模式偵測 圖三十一中滯留時間2.96分鐘波峰所得質譜圖……….7

    Application of Liquid Chromatography-Tandem Mass Spectrometry and High-Field Asymmetric-Waveform Ion Mobility Spectrometry for Analyzing of Abused Drugs in Urine

    No full text
    本研究主要是利用液相層析串聯質譜技術與高場不對稱波離子移動能譜術於尿液中濫用藥物之分析。尿液經由一孔徑為0.2 μm注射針過濾器(syringe filter)過濾後,直接注入液相層析質譜儀進行分析。利用5公分短液相層析管柱與合適的層析沖提條件,分離尿液中十九種不同類型之濫用藥物後,再以加熱式電灑游離法正離子模式,將分析物從液相轉變成氣態離子,最後使用串聯質譜技術中選擇反應偵測模式進行分析。在最佳的游離化與離子傳送條件下,對於尿液中濫用藥物偵測極限低於8.4 ng/mL,線性範圍為0.5 ~ 900 ng/mL。針對尿液中不同濃度之濫用藥物分析精密度均低於24.6 %。應用此方法於真實尿液樣品之分析,可測得濫用藥物使用者尿液中安非他命類(AM與MA)濃度為118 ~ 1721 ng/mL;安非他命衍生物類 (MDA與MDMA)濃度為338 ~ 86341 ng/mL;美沙東濃度為396 ng/mL;嗎啡濃度為917 ~ 2467 ng/mL;愷它命類(K、NK與DHNK)濃度為 727 ~ 20297 ng/mL;118 ~ 1721 ng/mL。 研究亦對於高場不對稱波離子移動能譜術之原理進行簡單的介紹,實驗探討酪胺酸類化合物,於高場不對稱波離子移動能譜術中相關參數進行最佳化之探討。使用高場不對稱波離子移動能譜儀分析酪胺酸類化合物,在分散電壓為-4500 V;含有40 %氦氣之載流氣體 (carrier gas)流速為3 L/min;內/外電極溫度為80/100 ºC的條件下有最佳的分離條件與訊號強度。在最佳分析條件下,於水溶液與血清中酪胺酸化合物含量進行分析,可測得在水中酪胺酸之定量範圍為0.25 ~ 10 μg/mL,於血清基質中之定量範圍為 2 ~ 20 μg/mL。 研究最後結合高場不對稱波離子移動能譜術與液相層析串聯質譜術於尿液中愷他命與其代謝物分析之研究進行探討。在分散電壓為-4500 V;含有40 %氦氣之載流氣體 (carrier gas)流速為3 L/min;內/外電極溫度為80/100 ºC的條件下,高場不對稱波形離子移動能譜術分析愷它命及其代謝物有最佳之離子分離與穿透效果。在此最佳條件下,固定補償電壓為-5.5 V,結合液相層析串聯質譜術直接分析尿液中愷它命之含量,所得之線性範圍在0.5 ~ 500 ng/mL之間。相較於液相層析串聯質譜術,所開發方法分析尿液中愷它命類化合物可得到較高之訊號-雜訊比,因此具有較低之分析偵測極限。This research is concerned with the development of two analytical methods, liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) and high-field asymmetric waveform ion mobility spectrometry (FAIMS), for analyzing various abused drugs in urine and tyrosine in water and serum. For LC-HESI-MS/MS, chromatographic analysis was performed on a short (5 cm) C18 reverse phase column using a linear gradient of 10 mM ammonium acetate containing 0.1 % formic acid-methanol as mobile phase, total analytical time was 7 minutes. A simple sample preparation method was used by passing urine sample through a 0.22 μm syringe filter. The detection limits of target abused drugs analyzed by proposed method were ranged from 0.03 ng/mL (cocaine) to 8.4 ng/mL (morphine); the linear range was from 0.5 to 900 ng/mL with relative standard deviation value below 16.5 % (intra-day precision) and 24.6 % (inter-day precision). The feasibility of applying the proposed method to determine various abused drugs in real samples was examined by analyzing urine samples form drug-abused suspects. The abused drugs including ketamines and amphetamines were detected in suspected urines. The results demonstrate the suitability of LC-HESI-MS/MS for high throughput screening of the various abused drugs in urine. Second investigation evaluates FAIMS-MS to analyze tyrosines including (Tyr)、(Tyr)3 and (Tyr)6. Under the optimal FAIMS conditions: DV: -4500 V; carrier gas composition: 40 % He in N2;carrier gas flow rate : 3 L/min; inner/outer electrode temperature: 80/100 ºC, analyzing tyrosines by FAIMS-MS has maximum ion separation and transmission efficiency. For analyzing of tyrosine in water solution and serum by FAIMS-MS/MS, the linearity range is from 0.25 to 10 and 2 to 20 μg/mL, respectively. In third investigation, FAIMS combined with LC-MS/MS was used to analyzing ketamine, norketamine and dehydronorketamine in urine. For FAIMS analyzing, ketamine and its metabolits has maximum ion separation and transmission efficiency under the optimal FAIMS conditions, DV: -4700 V; carrier gas composition: 20 % He in N2;carrier gas flow rate : 3 L/min; inner/outer electrode temperature: 70/90 ºC. For LC-FAIMS-MS/MS analyzing, the CV was set at -5.5 V for ketamine and its metabolites. Without any sample preparation process, urine sample was directly injected and analyzed by proposed method. The linearity range was from 0.5 to 500 ng/mL and the detection limits and qutification limits were range from 0.01 ~ 0.08 ng/mL and 0.03 ~ 0.26 ng/mL, respectively. Comparing LC-FAIMS-MS/MS and LC-MS/MS methods for analyzing ketamines in urine, the LC-FAIMS-MS/MS has higher signal-to-noise ratio than LC-MS/MS due to the reduction of noise.目錄 摘要…….………………………………………………………………………. i Abstract……………………………………………………………………….... iii 目錄…………………………………………………………………………...... v 表目錄………………………………………………………………………...... viii 圖目錄………………………………………………………………………...... ix 第一章、緒論……………………………………………………....................... 1 1.1、鑑識科學與鑑識毒物學…………………………………………………. 1 1.2、常見之濫用藥物………………………………………………………….. 2 1.2.1、中樞神經系統抑制劑……………………………………………….. 2 1.2.1.1、麻醉類劑………………………………………………………… 2 1.2.1.2、鎮靜-安眠類…………………………………………………….. 3 1.2.1.3、其他類…………………………………………………………… 4 1.2.2、中樞神經系統興奮劑…………………………………….………….. 4 1.2.3、中樞神經系統迷幻劑………………………………………………… 6 1.2.4、濫用藥物之分析……………………………………………………… 7 1.3、質譜儀原理……………………………………………………………….. 8 1.3.1、四極矩質量分析器……………………………………...................... 11 1.3.2、串聯質譜術……………………………………………...................... 14 1.3.3、大氣壓游離法……………………………………………………….. 18 1.3.3.1、大氣壓化學游離法……………………………………………… 18 1.3.3.2、電灑游離法……………………………………………………… 20 1.4、高場不對稱波形離子移動能譜術……………………………………….. 24 1.4.1、離子移動能譜術…………………………………………………….. 24 1.4.2、高場不對稱波形離子移動能譜術之介紹………………………….. 27 1.5、研究目標…………………………………………………………………. 30 1.6、參考文獻…………………………………………………………………. 31 第二章、液相層析結合加熱式電灑游離法串聯質譜術於尿液中多種濫用 藥物高通量篩檢之研究…………………………………………..... 39 2.1、前言……………………………………………………………………….. 39 2.2、實驗部份………………………………………………………………….. 42 2.2.1、藥品與標準溶液…………………………………………………….. 42 2.2.2、儀器設備…………………………………………………………….. 49 2.2.3、離子抑制效應與方法確效之探討………………………………….. 50 2.2.4、真實樣品的測定…………………………………………………….. 52 2.3、結果與討論……………………………………………………………….. 53 2.3.1、濫用藥物之液相層析質譜分析…………………………………….. 53 2.3.2、方法確效之探討…………………………………………………….. 69 2.3.3、LC-HESI-MS/MS分析尿液中濫用藥物之精密度………………….. 72 2.3.4、離子抑制效應之探討……………………………………….………. 72 2.3.5、真實樣品之分析…………………………………………………….. 81 2.4、結論……………………………………………………………………..… 94 2.5、參考文獻………………………………………………………………..… 95 第三章、高場不對稱波形離子移動能譜術於酪胺酸之研究……………..… 97 3.1、前言……………………………………………………………………..… 97 3.2、實驗部份………………………………………………………………..… 101 3.2.1、藥品及標準溶液…………………………………………………...… 101 3.2.2、儀器設備…………………………………………………………..… 102 3.2.3、高場不對稱波形離子移動能譜儀分析酪胺酸類最佳化之探討..… 105 3.2.4、血清之前處理…………………………………………………..…… 105 3.3、結果與討論…………………………………………………………..…… 106 3.3.1、酪胺酸類化合物於高場不對稱波形離子移動能譜術之分析……..…………………………………………………………….. 106 3.3.2、高場不對稱波形離子移動能譜術於酪胺酸之定量分析…………..……………………………………………………….. 120 3.4、結論……………………………………………………………………….. 126 3.5、參考文獻………………………………………………………………….. 127 第四章、高場不對稱波形離子移動能譜術結合液相層析質譜術於尿液中愷 它命之偵測…………………………………………………………… 130 4.1、前言……………………………………………………………………….. 130 4.2、實驗部份………………………………………………………………….. 134 4.2.1、藥品及標準溶液……………………………………………………… 134 4.2.2、儀器設備……………………………………………………………… 135 4.2.3、高場不對稱波形離子移動能譜術分析愷它命類化合物最佳化條件 之探討………………………………………………………………… 136 4.2.4、液相層析串聯質譜術與高場不對稱波形離子移動能譜術分析愷它 命類之定量分析……………………………………………………… 138 4.3、結果與討論……………………………………………………………….. 139 4.3.1、愷它命與代謝物之高場不對稱波形離子移動能譜術之分析…………………………………………………………………...… 139 4.3.2、液相層析-高場不對稱波形離子移動能譜術-串聯質譜術於愷它命 類化合物分析之探討……………………………………………….. 145 4.3.3、液相層析-高場不對稱波形離子移動能譜術-串聯質譜術於愷它命 類化合物之線性範圍及偵測極限………………………………….. 148 4.3.4、液相層析-高場不對稱波形離子移動能譜術-串聯質譜術於愷它命 類化合物之精密度與準確度…………………..…………………… 154 4.4、結論……………………………………………………………………….. 156 4.5、參考文獻………………………………………………………………….. 159 第五章、結語…………………………………………………………………… 161 表目錄 Table 1-1 The analytical methods for abused drugs analysis in the literatures 9 Table 1-2 Four scan modes in tandem mass spectrometry……………..…….. 17 Table 2-1 The ion transitions and collision energy for SRM determination of abused drugs and metabolites…………....………………………… 64 Table 2-2 Analytical characteristics of LC-HESI-MS/MS method for analysis of abused drugs in urine (ng/mL)……………………...…. 71 Table 2-3 Intra- and inter-day precision of the QC samples (50, 200, 400 ng/mL) of abused drugs in urine expressed by relative standard deviation (%)…….………………..………. …….………………... 73 Table 2-4 Analytical characteristics of LC-HESI-MS/MS method for analysis of abused drugs in pure water…………………………….. 75 Table 2-5 Evaluation of matrix effect of LC-HESI-MS/MS for analysis of abused drugs……………………………………………………….. 76 Table 2-6 Abused drugs concentrations (ng/mL) determination in real samples analyzed by CSMUH…………………………………….. 82 Table 2-7 Abused drugs concentrations (ng/mL) determination in real samples analyzed by LC-HESI-MS/MS…………………………... 93 Table 3-1 Optimal ionization and ion transmission parameters for tyrosines... 107 Table 3-2 The optimal FAIMS conditions for mixture of tyrosines………..… 119 Table 3-3 Linear range and equation for tyrosine by HESI-FAIMS-MS/MS (μg/mL)……………………………………………………………. 125 Table 4-1 Optimal ionization and ion transmission parameters for ketamines........................................................................................... 137 Table 4-2 The ion transitions and collision energy for SRM determining of ketamines........................................................................................... 137 Table 4-3 The summarized optimal FAIMS conditions for analyzing ketamines by FAIMS......................................................................... 146 Table 4-4 Analytical characteristics of LC- MS/MS and LC- FAIMS-MS/MS for ketamines in urine matrix (ng/mL)…………………………….. 155 Table 4-5 Precision and accuracy study of the QC samples (25, 100 and 300 ng/mL) of ketamines in urine expressed by relative standard deviation (%) and mean relative error (%)………………………… 158 圖目錄 Figure 1-1 Schematic diagram of quadrupole mass spectro- meter…………...………………………………………………… 13 Figure 1-2 Mathieu stability diagram for a quadrupole mass spectro- meter………………………...…………………………… 15 Figure 1-3 Schematic diagram of a triple-quadrupole tandem mass spectrometer……………………………………………………... 16 Figure 1-4 Schematic of APCI process in the positive ion polarity mode….. 19 Figure 1-5 Schematic of ESI process in the positive ion polarity mode……. 22 Figure 1-6 Two mechanisms of formation gas phase ion from charged droplet (a) coulombic fission and (b) ion evaporation………….. 23 Figure 1-7 Schematic of H-ESI in the positive ion mode…………………... 25 Figure 1-8 Schematic of a conventional ion mobility spectrometer………... 26 Figure 1-9 Hypothetical dependence of ion mobility on electric field strength for three different types of ions………………………… 29 Figure 1-10 Ion motion between two parallel plates during the application of an electric field. A simplified asymmetric waveform is applied to the upper plate………………………………………………….... 29 Figure 2-1 The structures of CNS Inhibitor– Anaesthetic……………….….. 43 Figure 2-2 The structures of CNS Inhibitor– Sedative- Hypnotics (benzodiazepines)………………………………………………... 44 Figure 2-3 The structures of CNS Inhibitor– Others (ketamines)…………... 45 Figure 2-4 The structures of CNS Stimulant (amphetamines)………….…... 46 Figure 2-5 The structures of CNS Stimulant (cocaine) and CNS Hallucinogen (LSD)……………………………………………... 47 Figure 2-6 Mass spectrum of alprazolam produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 309………..…... 54 Figure 2-7 Mass spectrum of AM produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 136……………..…... 54 Figure 2-8 Mass spectrum of cocaine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 304…..………... 55 Figure 2-9 Mass spectrum of codeine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 300………..…... 55 Figure 2-10 Mass spectrum of dihydrocodeine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 302..…... 56 Figure 2-11 Mass spectrum of DK produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 222………..………... 56 Figure 2-12 Mass spectrum of K produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 238…......................... 57 Figure 2-13 Mass spectrum of lorazepam produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 321………………………………………………………….……. 57 Figure 2-14 Mass spectrum of LSD produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 324………………..... 58 Figure 2-15 Mass spectrum of MA produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 150……………..…... 58 Figure 2-16 Mass spectrum of MDA produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 180………..………... 59 Figure 2-17 Mass spectrum of MDEA produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 208……..……... 59 Figure 2-18 Mass spectrum of MDMA produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 194…..………... 60 Figure 2-19 Mass spectrum of methadone produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 310……..……... 60 Figure 2-20 Mass spectrum of midazolam produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 326……..……... 61 Figure 2-21 Mass spectrum of morphine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 286………..…... 61 Figure 2-22 Mass spectrum of norketamine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum for m/z 224……… 62 Figure 2-23 Mass spectrum of norcodeine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 286………..….. 62 Figure 2-24 Mass spectrum of p-methoxyamphetamine produced by HESI-MS/MS (a) full scan spectrum (b) daughter ion spectrum of m/z 166…………………………………………………..…… 63 Figure 2-25 (a) Total ion chromatogram of 100 ng/mL abused drugs in urine produced by using LC-MS; (b) Extracted ion chromatogram (m/z 238) of 100 ng/mL ketamine in urine produced by using LC-MS.…………………………………………………………... 66 Figure 2-26 (a) Total ion chromatogram of 100 ng/mL abused drugs in urine produced by using LC-SRM; (b) Mass ion chromatogram (m/z 238 > 125) of 100 ng/mL ketamine in urine produced by using LC-SRM…………………………………………………………. 66 Figure 2-27 Mass ion chromatogram of the spiked 200 ng/mL abused drugs in blank urine produced by LC-HESI-MS/MS. (a) aplrazolam; (b) AM; (c) cocaine; (d) codeine; (e) dihydrocodeine; (f) DK; (g) K; (h) lorazepam; (i) LSD; (j) MA; (k) MDA; (l) MDEA; (m) MDMA; (n) methadone; (o) midazolam; (p) morphine; (q) NK; (r) norcodeine; (s) PMA; (t) ketamine-d4………………………... 68 Figure 2-28 Mass ion chromatogram of the spiked 200 ng/mL of 19 abused drugs in blank urine produced by LC-HESI-MS/MS (a) m/z 300 > 165; (b) m/z 300 > 215………………………………………… 70 Figure 2-29 Mass ion chromatogram of the spiked 200 ng/mL of 19 abused drugs in blank urine produced by LC-HESI-MS/MS (a) m/z 180 > 135; (b) m/z 180 > 163………………………………………… 70 Figure 2-30 Mass ion chromatogram of m/z 286 > 165 (morphine) (a) post-column infusion of 200 ng/mL of morphine; (b) spiked 200 ng/mL of 19 abused drugs in blank urine produced by LC-HESI-MS/MS………………………………………………... 77 Figure 2-31 Mass ion chromatogram of m/z 136 > 91 (AM) (a) post-column infusion of 200 ng/mL of AM; (b) spiked 200 ng/mL of 19 abused drugs in blank urine produced by LC-HESI-MS/MS….... 78 Figure 2-32 Mass ion chromatogram of m/z (ketamine) (a) post-column infusion of 200 ng/mL of ketamine; (b) spiked 200 ng/mL of 19 abused drugs in blank urine produced by LC-HESI-MS/MS... 79 Figure 2-33 Mass ion chromatogram of m/z 326 > 209 (midazolam) (a) post-column infusion of 200 ng/mL of midazolam; (b) spiked 200 ng/mL of 19 abused drugs in blank urine produced by LC-HESI-MS/MS……………………………………………….. 80 Figure 2-34 Mass ion chromatogram of the S3 sample produced by LC-HESI-MS/MS. (a) aplrazolam; (b) AM; (c) cocaine; (d) codeine; (e) dihydrocodeine; (f) DK; (g) K; (h) lorazepam; (i) LSD; (j) MA; (k) MDA; (l) MDEA; (m) MDMA; (n) methadone; (o) midazolam; (p) morphine; (q) NK; (r) norcodeine; (s) PMA; (t) ketamine-d4…………………………………………………… 84 Figure 2-35 Mass ion chromatogram of AM of the S3 sample produced by LC-HESI-MS/MS; (a) m/z 136 > 91; (b) m/z 136 > 119………… 86 Figure 2-36 Mass ion chromatogram of cocaine of the S3 sample produced by LC-HESI-MS/MS; (a) m/z 304 > 182; (b) 304 > 105………... 87 Figure 2-37 Mass ion chromatogram of lorazepam of the S3 sample produced by LC-HESI-MS/MS; (a) 321 > 275; (b) 321 > 303……………. 88 Figure 2-38 Mass ion chromatogram of MA of the S3 sample produced by LC-HESI-MS/MS; (a) 150 > 91; (b) 150 > 119…………………. 89 Figure 2-39 Mass ion chromatogram of MDA of the S3 sample produced by LC-HESI-MS/MS; (a) 180 > 135; (b) 180 > 163………………... 90 Figure 2-40 Mass ion chromatogram of methadone of the S3 sample produced by LC-HESI-MS/MS; (a) 310 > 265; (b) 310 > 105….. 91 Figure 2-41 Mass ion chromatogram of morphine of the S3 sample produced by LC-HESI-MS/MS; (a) 286 > 165; (b) 286 > 201…………….. 92 Figure 3-1 The structures of (Tyr)、(Tyr)3 and (Tyr)6………………………. 100 Figure 3-2 (a) Three-dimensional schematic of FAIMS device; (b) cross section of the FAIMS device illustrating radial location, r, between the walls of the inner electrode “a” and outer electrode “b”. The asymmetric waveform is applied to the inner electrode…………………………………………………………. 104 Figure 3-3 Mass Spectrum of mixture of tyrosines produced by infusing standard solution into ion source and analyzing by HESI-MS, m/z 182 for Tyr; m/z 508 for (Tyr)3; m/z 997 for (Tyr)6………… 107 Figure 3-4 The CV spectrum of mixture of tyrosines produced by HESI-FAIMS-MS……………………………………………….. 108 Figure 3-5 Effect of dispersion voltage on the compensation voltage of mixture of tyrosines……………………………………………... 110 Figure 3-6 Effect of dispersion voltage on the signal intensity of mixture of tyrosines…………………………………………………………. 110 Figure 3-7 Effect of helium proportion of nitrogen at flow rate of 3 L/min on the compensation voltage of mixture of tyrosines…………… 112 Figure 3-8 Effect of helium proportion of nitrogen at flow rate of 3 L/min on the signal intensity of mixture of tyrosines…………………... 112 Figure 3-9 Effect of carrier gas flow rate on the compensation voltage of mixture of tyrosines……………………………………………... 114 Figure 3-10 Effect of carrier gas flow rate on the signal intensity of mixture of tyrosines……………………………………………………… 114 Figure 3-11 The CV spectrum of mixture of tyrosines produced by HESI-FAIMS-MS of carrier gas flow rate (a) 3.0 L/min; (b) 3.5 L/min……………………………………………………………. 115 Figure 3-12 Effect of temperature of electrodes on the compensation voltage of mixture of tyrosines………………………………………….. 117 Figure 3-13 Effect of temperature of electrode on the signal intensity of mixture of tyrosines……………………………………………... 117 Figure 3-14 The CV spectrum of mixture of tyrosines produced by HESI-FAIMS-MS of temperature of electrode (Inner/ Outer) (a) 80/100 ºC; (b) 100/120 ºC……………………………………….. 118 Figure 3-15 Mass spectrum of mixture of tyrosines produced by HESI-FAIMS-MS (a) CV: 0.5 V; (b) CV: -11.2 V; (c) CV: -8.2 V. 119 Figure 3-16 Daughter ion spectrum of tyrosine (m/z 182) produced by HESI-FAIMS-MS/MS………………………………………….... 121 Figure 3-17 The CV spectrum of 0.5 μg/mL tyrosine in water produced by HESI-FAIMS-MS/MS…………………………………………… 121 Figure 3-18 Calibration curve of tyrosine in water produced by HESI- FAIMS-MS/MS…………………………………………………... 122 Figure 3-19 The CV spectrum of 5 μg/mL tyrosine in serum matrix produced by HESI-FAIMS-MS/MS………………………………………... 124 Figure 3-20 Calibration curve of tyrosine in serum produced by using HESI- FAIMS-MS/MS………………………………………………….. 124 Figure 4-1 Effect of dispersion voltage on compensation voltage of ketamines………………………………………………………... 140 Figure 4-2 Effect of dispersion voltage on signal intensity of ketamines…… 140 Figure 4-3 Effect of carrier gas composition on compensation voltage of ketamines………………………………………………………... 142 Figure 4-4 Effect of carrier gas composition on signal intensity of ketamines………………………………………………………... 142 Figure 4-5 The CV spectrum of ketamines produced by HESI-FAIMS- MS of helium content (a) 20 %; (b) 40 %.…………………………… 143 Figure 4-6 Effect of carrier gas flow rate on compensation voltage of ketamines………………………………………………………... 144 Figure 4-7 Effect of carrier gas flow rate on signal intensity of ketamines… 144 Figure 4-8 Effect of temperature of electrodes on compensation voltage of ketamines………………………………………………………... 146 Figure 4-9 The CV spectrum of ketamines produced by HESI-FAIMS-MS under the optimal conditions, CV values for ketamine, norketamine, and dehydro- norketamine were -5.9, -5.3, and -5 V, respectively…………………………………………………… 147 Figure 4-10 The mass ion chromatogram of ketamines (5 ng/mL) produced by LC-HESI-MS/MS (a) ketamine (238→125); (b) norketamine (224→125); (c) dehydronorketamine (222→205); (d) ketamine-D4 (242→129) ………………………………………... 149 Figure 4-11 The mass ion chromatogram of ketamines (5 ng/mL) produced by LC-HESI-FAIMS-MS/MS ketamine (238→125); (b) norketamine (224→125); (c) dehydronorketamine (222→205); (d) ketamine-D4 (242→129) ……………………………………. 150 Figure 4-12 Calibration curve of ketamine produced by using LC-MS/MS…. 151 Figure 4-13 Calibration curve of norketamine produced by using LC-MS/MS 151 Figure 4-14 Calibration curve of dehydronorketamine produced by using LC-MS/MS………………………………………………………. 152 Figure 4-15 Calibration curve of ketamine produced by using LC-FAIMS- MS/MS………………………………….………………………... 152 Figure 4-16 Calibration curve of norketamine produced by using LC-FAIMS- MS/MS………………….………………………………………... 153 Figure 4-17 Calibration curve of dehydronorketamine produced by using LC-FAIMS-MS/MS……………………………………………... 15

    Study of Improvement of Safety Devices for Prevention Falling down of Aircraft Maintenance Workers

    No full text
    國內之飛機維修業者,因受限於場地及客源之故,均採一套設備廠房進行多機種之維護保養工作,因而自動化程度有限,且早期規劃設備廠房時,對安全之考量並 未十分詳盡,所以存在了許多工作上的危險點,也因此造成了許多職業災害,其中又以飛機維修工作平台工作人員墜落產生之危害最為嚴重,本研究藉由蒐集分析 飛機維修勞工危害原因及相關安全作業方式之缺點與相關安全裝置的研發、應用、專利等技術與實務資料,然後根據安全確認(Failure-to-Safety)的設計理論提出防 止飛機維修工作平台墜落與維修工作平台之活動地板的安全裝置改善設計方案,同時也提出飛機尾翼維修工作平台之輔助定位系統設計方案,並進行縮小模型雛型 製做測試,作為飛機維修業者安全裝置改善之依據,以達降低飛機維修人員職業災害之目的。Because of the limition of sapce and customers, the aircraft maintenance companies in our country only use one set of equipment to perform multi-style aircrafts maintenance jobs. This has limited the automation of the maintenance jobs. Therefore, dangerous situations happen very often which causes the occupational damage especially for the falling down accident. This research is trying to reduce the occupational damage of aircraft maintenance workers. A preventaion falling down safety device for using in the cable of aircraft maintenance dock is purposed. An auxiliary positioning system and a self-locking movable floor device are also presented in this research. All designs are analyzed according to the theory of failure-to-safe to ensure its safety

    超臨界流體萃取方法

    No full text
    一種超臨界流體萃取方法,係先將一樣品置入一第一容器中,並將超臨界流體注入其中,超臨界流體與樣品接觸後可由其中萃取出萃出物,接著超臨界流體連同萃出物經由一限流器注入含有衍生化試劑的第二容器中,再利用一固相微萃取裝置對第二容器中之萃出物以頂空方式進行採樣。此發明不僅可以降低有機溶劑的使用量和對環境的危害;同時更具有高靈敏度與高準確度,並可應用於生活中常接觸物質之微量分析
    corecore