5 research outputs found

    一种基于表面增强拉曼散射技术的复合材料及其制备方法

    No full text
    本发明涉及一种基于表面增强拉曼散射技术的复合材料及其制备方法。具体地,本发明公开了一种复合材料,所述复合材料包括表面修饰有第一靶分子的微球与表面修饰有拉曼信号分子和经第二靶分子修饰的高分子的第二组分;并且,在含待测物溶液中,所述待测物与所述微球和所述第二组分通过所述第一靶分子和所述第二靶分子结合形成易于离心沉淀的复合物。本发明还公开了所述复合材料的制法和用途,使用所述复合材料对人前列腺特异性抗原(PSA)、人血红蛋白(Hb)、降钙素原(PCT)或疾病标志物(如肿瘤标志物、心血管疾病标志物、老年痴呆症标志物、支原体、衣原体等)等进行检测,可有效降低假阳性和假阴性效应,具有高灵敏、简单、快速、低成本等优点

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore