4 research outputs found

    天然气水合物降压联合井壁加热开采的数值模拟

    No full text
    降压法开采天然气水合物会受到储层传热的明显影响。降压联合井壁加热开采天然气水合物是将降压和热激两种方法综合使用,由此建立了天然气水合物降压联合井壁加热开采的数学模型,通过数值模拟手段对实验室尺度下的降压联合井壁加热法开采天然气水合物进行了模拟研究。模型得到了实验数据的较好验证。进一步的模拟结果表明:井壁加热能够给区域内提供热量并有效提高温度,有助于改善天然气水合物的产气,降压联合井壁加热开采方式下的产气优于纯降压开采情形。但同时由于传热方向和导热等限制,井壁加热的作用范围和对产气率的提高有限。不同井壁加热温度下的产气率变化较小,对产气率的影响几乎可以忽略。此外,联合开采方式下边界传热对天然气水合物的产气影响较大,可能影响此方法在低地热梯度环境下实际储藏的开采使用

    Influences of gas hydrate reformation and permeability changes on depressurization recovery

    No full text
    In the consideration of natural gas hydrate reformation and its permeability changes,a mathematic model was built for the laboratory-scale depressurization recovery of natural gas hydrate,so as to simulate gas hydrate reformation in the depressurization

    Numerical simulation of gas production from hydrate by depressurization combined with well-wall heating

    No full text
    The depressurization-induced natural gas hydrate dissociation is limited by heat transfer. This research presented a numerical study of gas production to clarify the dissociation characteristics of depressurization combined with well-wall heating. A 2D c

    天然气水合物二次生成及渗透率变化对降压开采的影响

    No full text
    在考虑天然气水合物二次生成及渗透率变化的基础上,建立了实验室尺度下的天然气水合物降压开采数学模型。利用该数学模型,对天然气水合物降压开采过程中的水合物二次生成进行了模拟,并分析评价了水合物二次生成及渗透率变化对水合物分解产气的影响。模拟结果表明:水合物二次生成主要局限于降压产气出口附近,二次水合物现象会引起局部水合物饱和度及温度、压力等发生明显变化;同时,水合物二次生成会导致产气速率大幅降低、产气持续时间延长和系统压力急剧增加,但累积产气量不受其影响。研究发现,不同于纯降压产气过程,在水合物二次生成的情形下,产气受出口压力的影响较大,而初始温度对产气的影响较小
    corecore