25 research outputs found

    The lncRNA MALAT1 rs619586 G Variant Confers Decreased Susceptibility to Recurrent Miscarriage

    Get PDF
    Cardiovascula disease and recurrent miscarriage have shared risk factors, and some cardiovascular disease-related candidate genes have been confirmed to be associated with recurrent miscarriage. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that is considered to be associated with susceptibility to cardiovascular disease. However, whether lncRNA MALAT1 polymorphisms are related to recurrent miscarriage susceptibility is unclear. We genotyped three lncRNA MALAT1 polymorphisms (rs591291, rs619586, and rs3200401) in 284 patients and 392 controls using TaqMan methods. Logistic regression was used to evaluate the odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for age. Our results showed that the rs619586 G variant had protective effects against recurrent miscarriage (AG vs. AA: adjusted OR = 0.670, 95% CI = 0.457–0.982, p = 0.040; GG vs. AA: adjusted OR = 0.278, 95% CI = 0.079–0.975, p = 0.046; GG/AG vs. AA adjusted OR = 0.621, 95% CI = 0.429–0.900, p = 0.012). In a combined analyses of protective genotypes, with regard to the three single nucleotide polymorphisms (SNPs), we found that individuals with two or three protective genotypes exhibited a significantly lower risk of recurrent miscarriage than those with no or only one protective genotype (adjusted OR = 0.369, 95% CI = 0.199–0.684, p = 0.002). Moreover, the decrease in recurrent miscarriage risk with two or three protective genotypes was most pronounced in women less than 35 years of age (OR = 0.290, 95% CI = 0.142–0.589, p < 0.001) and in women with 2–3 miscarriages (adjusted OR = 0.270, 95% CI = 0.126–0.580, p < 0.001). In conclusion, our study suggests that the rs619586 G variant may have potential protective effects conferring a decreased risk of recurrent miscarriage in the southern Chinese population

    Preliminary Results on Preparation and Performance of a Self-Emulsifying Waterborne Epoxy Curing Agent at Room Temperature

    No full text
    Polyethylene glycol 1000 (PEG1000) and epoxy resin E20 were used to synthesize the E20/PEG1000 polymer (EP1K), which was later transformed into a self-emulsifying water-based epoxy curing agent by reacting with m-Xylylenediamine (MXDA). The effects of molecular weight, the molar ratio of the raw materials, the catalyst dosage, and the different co-solvents on the properties of the prepared curing agent were systematically explored. The infrared absorption spectra of E20, EP1K, and the water-based epoxy curing agent were compared and analyzed. The coating properties of the waterborne epoxy varnish, which was based on water-based epoxy curing agents to emulsify and cure the resin E44, were systematically tested. The results demonstrated that with a molar ratio of 1:1:4 of PEG1000, E20, and MXDA, the boron trifluoride etherate (BF3·Et2O) as catalyst accounts for 0.3% of the total mass of E20 and PEG1000, and an applicable period of 3 h for the prepared varnish, the anti-corrosion performance, and mechanical properties of the coatings were excellent.</jats:p

    Graph Theory and Its Application in Optimization of Gas Drainage System in Coal Mine

    Get PDF
    AbstractGas drainage is an important gas treatment measure. With changing the location and gas drainage quantity of the system, some reasonless phenomena would occur, Hence, the system must be optimized. According to the relation of graph theory and gas drainage system, the gas drainage system of Zhao Gezhuang mine is optimized by graph theory and the resistances are calculated. After optimization, the drainage resistance is equally distributed, which increases the quantity of gas drainage from coal mine, improves the efficiency and reliability of mine gas drainage system and enhances the safety of the mine; so the firm foundation of the gas utilization is established and the virtuous cycle of “drainage-usage -safety production” and comprehensive gas control are well realized. It shows that the graph theory can be well applied in gas drainage system optimization

    Preliminary Results on Preparation and Performance of a Self-Emulsifying Waterborne Epoxy Curing Agent at Room Temperature

    No full text
    Polyethylene glycol 1000 (PEG1000) and epoxy resin E20 were used to synthesize the E20/PEG1000 polymer (EP1K), which was later transformed into a self-emulsifying water-based epoxy curing agent by reacting with m-Xylylenediamine (MXDA). The effects of molecular weight, the molar ratio of the raw materials, the catalyst dosage, and the different co-solvents on the properties of the prepared curing agent were systematically explored. The infrared absorption spectra of E20, EP1K, and the water-based epoxy curing agent were compared and analyzed. The coating properties of the waterborne epoxy varnish, which was based on water-based epoxy curing agents to emulsify and cure the resin E44, were systematically tested. The results demonstrated that with a molar ratio of 1:1:4 of PEG1000, E20, and MXDA, the boron trifluoride etherate (BF3&middot;Et2O) as catalyst accounts for 0.3% of the total mass of E20 and PEG1000, and an applicable period of 3 h for the prepared varnish, the anti-corrosion performance, and mechanical properties of the coatings were excellent
    corecore