13 research outputs found
Using wavelet transform to study the Lipschitz local singular exponent in wall turbulence
In this paper, wavelet,transform is introduced to study the Lipschitz local singular exponent for characterising the local singularity behavior of fluctuating velocity in wall turbulence. I, is found that the local singular exponent is negative when the ejections and sweeps of coherent structures occur in a turbulent boundary layer
用自相关法确定VITA法的门限K
研究了用VITA条件采样方法壁湍猝发的门限值与壁湍流猝发平均周期之间的关系,根据用壁湍流流向脉动速度自相关函数检测得到的壁湍流猝发平均周期,确定壁,湍猝发VITA条件采样的门限值K
壁湍流多尺度湍涡结构推广的自相似标度律
在水槽中测量了中等雷诺数下平板湍流边界层中的瞬时流向速度的时间序列,验证了Benzi提出的推广的自相似标度律,用子波变换将壁湍流脉动速度分解为多尺度湍涡结构的速度,研究了每一个尺度的湍涡速度结构函数的推广的自相似标度律。主要结论如下:湍流的统计性质是自相似的,这不仅适用于充分发展湍流,而且适用于中等雷诺数和低雷诺数湍流,而且具有相同的标度指数;推广的自相似标度律的适用的尺度范围远远大于惯性子区的范围,可以一直延伸至耗散区的尺度范围;推广的自相似标度律不仅适用于均匀各向同性湍流,也适用于剪切湍流如边界层湍流
用子波变换检测壁湍流信号局部标度指数
本文用子波变换检测了刻画壁湍流脉动信号自相似性的局部标度指数,研究了不同尺度的湍流结构的自相似性,发现在湍流边界层猝发过程中,喷射和扫掠发生时刻小尺度脉动速度信号的局部标度指数为负值,说明在大尺度猝发事件发生的时刻小尺度结构具有奇异的自相似性,在猝发过程中其作用不仅仅是对湍能的耗散
用能量最大准则确定VITA法的平均周期
引入了子波变换的方法来确定检测壁湍流猝发事件的VITA法的短时间平均周期T。为了确定VITA法的短时间平均周期T,用子波变换对热膜测速仪测量得到的湍流边界层近壁区域的流向脉动速度的时间序列进行了分解,分解在时域和频域同时进行,根据每一个尺度的子波系数的模的平方在时域的积分得到壁湍流每一个尺度的脉动动能随尺度的分布,用能量最大准则确定与壁湍流猝发事件的时间尺度对应的能量最大的尺度,该尺度也就是VITA法的短时间平均周期T
用子波变换研究壁湍流Lipschitz奇异性指数
本文用子波变换研究了描述壁湍流脉动速度局部奇异性行为的Lipschitz奇异性指数,发现在湍流边界层中,猝发和扫掠发生时脉动速度信号的Lipschitz局部奇异性指数为负值
钠离子电池HOPG负极固体电解质界面膜的AFM研究
固体电解质界面膜(Solid Electrolyte Interphase,SEI)在钠离子电池(Sodium Ion Battery,NIB)中扮演着重要作用。迄今为止,对于钠离子电池SEI膜的探索仍然十分有限。本研究利用电化学原子力显微镜(Electrochemical AFM,EC-AFM),通过循环伏安法研究了钠离子电池负极材料高定向热解石墨(Highly Oriented Pyrolytic Graphite,HOPG),在碳酸乙烯酯(Ethylene Carbonate,EC)和氟代碳酸乙烯酯(Fluoroethylene Carbonate,FEC)电解液中首次充放电过程SEI膜的结构变化。通过纳米刻蚀的方法,进一步获得首次充放电结束后SEI的厚度。结合X射线光电子能谱(X-ray Photoelectron Spectroscopy,XPS)分析了HOPG在EC和FEC电解液中所形成的SEI膜的化学组成区别。研究结果表明,在EC电解液中,所生成的SEI膜在HOPG表面非台阶处较薄,但在HOPG的台阶处较厚;在FEC电解液中,所生成的SEI膜很厚,具有明显的双层结构。其中上层是由体积较大的颗粒组成,下层则由致密的小颗粒组成
用自相关法确定壁湍流相干结构条件采样的门限值
研究了用条件采样方法检测壁湍流相干结构的门限值与壁湍流相干结构平均粹发周期检测结果之间的关系,根据用壁湍流流向脉动速度自相关函数检测壁湍流相干结构平均猝发周期的方法,提出了用自相关法确定壁湍流相干结构条件采样的门限值,从而检测壁湍流相干结构的方
Burst event detection in wall turbulence by WVITA method
Wavelet Variable Interval Time Average (WVITA) is introduced as a method incorporating burst event detection in wall turbulence. Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer. This unfolding is both in time and in space simultaneously. The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space. The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales. Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average (VITA) scheme. The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval
Extended self-similar scaling law of multi-scale eddy structure in wall turbulence
The longitudinal fluctuating velocity of a turbulent boundary layer was measured in a water channel at a moderate Reynolds number. The extended self-similar scaling law of structure function proposed by Benzi was verified. The longitudinal fluctuating velocity, in the turbulent boundary layer was decomposed into many multi-scale eddy structures by wavelet transform. The extended self-similar scaling law of structure function for each scale eddy velocity was investigated. The conclusions are I) The statistical properties of turbulence could be self-similar not only at high Reynolds number, but also at moderate and low Reynolds number, and they could be characterized by the same set of scaling exponents xi (1)(n) = n/3 and xi (2)(n) = n/3 of the fully developed regime. 2) The range of scales where the extended self-similarity valid is much larger than the inertial range and extends far deep into the dissipation range,vith the same set of scaling exponents. 3) The extended selfsimilarity is applicable not only for homogeneous turbulence, but also for shear turbulence such as turbulent boundary layers
