47,433 research outputs found

    Universal enveloping algebras of Poisson Ore extensions

    Full text link
    We prove that the universal enveloping algebra of a Poisson-Ore extension is a length two iterated Ore extension of the original universal enveloping algebra. As consequences, we observe certain ring-theoretic invariants of the universal enveloping algebras that are preserved under iterated Poisson-Ore extensions. We apply our results to iterated quadratic Poisson algebras arising from semiclassical limits of quantized coordinate rings and a family of graded Poisson algebras of Poisson structures of rank at most two.Comment: 13 page
    corecore