7 research outputs found

    Dynamics and Device for Nano-Second Ion Beam Compression at CSRm

    No full text
    兰州重离子加速器冷却储存环的成功建成不仅为我国开展基础研究提供条件,而且会也为应用研究提供先进的实验条件和新的科学机遇。 目前,经过CSRm加速腔加速后的重离子束流无法满足高能量密度物理(涉及重离子驱动惯性约束核聚变新能源前期研究)和重离子聚变等基础研究所要求的高束流强度和纳秒量级短脉冲长度的需要,必须要对其束流进行纵向压缩。鉴于成本和有效性考虑,采用束团非绝热压缩方法对束团进行纵向压缩。因此,用于束团纵向非绝热压缩装置的研制也成了必然。 利用K-V包络方程对CSRm典型能量为250MeV/u、初始纵向束团长度为200ns,初始动量分散为5×10-4的238U72+离子束团的纵向非绝热压缩过程进行了束流动力学模拟,给出了束团在压缩过程中所要求的高频电压以束流相关参数的变化。 利用等效RLC电路方法和CST软件对纳秒级重离子束团获取装置---CSRm纵向束团非绝热压缩腔进行了计算和模拟。根据束团非绝热压缩理论以及CSRm储存环直线段长度的限定,因此,所要求的高频腔应该具有足够高的高频场梯度。本论文研究了一种采用新型软磁合金材料加载的高梯度高频腔,详细介绍了加载材料新型软磁合金的高频特性,研究了此高频腔所能达到的最大高频场梯度,模拟了其工作频率范围、品质因数等特性

    CSR纵向束团压缩腔研究

    No full text
    针对兰州重离子加速器冷却储存环的发展目标,为了满足高能量密度(涉及重离子驱动惯性约束核聚变新能源)等物理研究的需要,使用三维电磁场计算程序MAFIA研究了一种新型的适用于CSR的纵向束团压缩腔。此纵向束团压缩腔采用高磁导率软磁合金材料进行加载,相比于铁氧体加载的高频腔,可以得到高的电场梯度。以250MeV/u的238U72+离子为例进行了模拟计算,得出了此纵向束团压缩腔的工作频率为1.15MHz,峰值工作电压为80kV,由两个1/4波长同轴谐振腔组成,每个谐振腔峰值工作电压为40kV,能够满足在CSR上进行纵向束团压缩的要求

    CSR ns级重离子束动力学研究;Dynamics Study of Attaining Heavy Ion Beam With a Scale of Nanosecond Pulse Length in CSR

    No full text
    采用束团在纵向相空间快速旋转的非绝热压缩方法研究了在兰州重离子加速器冷却储存环(HIRFL-CSR)上获取高能ns量级短脉冲重离子束的可行性,利用K-V包络方程对能量为250MeV/u、初始纵向束团长度为200ns、初始动量分散为5&times;10-4的238U72+离子束团的非绝热压缩过程进行了束流动力学模拟,给出了在束团压缩过程中束流相关参数的变化。结果表明,在CSR上可取得最短为16ns长度的238U72+离子束团,可满足用于高能量密度物理研究的50ns束团长度的要求。<span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">The feasibility of attaining short pulse duration heavy ion beam with a scale of nanosecond pulse length was studied in the Heavy Ion Research Facility in LanzhouCooling Storage Ring(HIRFL-CSR), such heavy ion beam can be produced by non-adiabatic compression, and it is implemented by a fast rotation in the longitudinal phase space. In this paper, the bunch compression beam dynamics of 238U72+ which the energy is 250 MeV/u, initial bunch pulse duration is 200 ns, and the initial momentum spread is 5*10-4 was computed with K-V envelope model, and the possible beam parameters are presented during bunch compression. The short 238U72+ bunch of 16 ns is got which can satisfy with the research of high energy density physics</span

    Spectrum phenomenon of HIRFL-CSR: sudden change of central frequency

    No full text
    HIRFL-CSR调试过程中,利用频谱分析仪实时监测束流,根据其上测的数据进行相关参数调整,改善束流的品质。本文对分析仪上观测到的现象&mdash;束流的中心频率发生突变进行了研究,主要就电子束的高压不稳定性和中性化因子的突变做了理论分析,并进行了相关的模拟计算,根据模拟结果初步断定该现象的出现由电子束的中性化因子导致。<span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">In commissioning the HIRFL-CSR (Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou), with the spectrum analyzer monitoring the beams on-line, we measured many parameters of the beam status for improving quality of the heavy ion beams.In this paper, the sudden change of the beam center frequency is analyzed.A theoretical analysis is done mainly on instabilities of the electron voltage and the neutralization factor.Simulations were made for the problem.According to the simulation result, we can conclude that it is the instability of neutralization factor that caused the problem.</span

    重离子加速器束运线数据库系统设计优化

    No full text
    描述了兰州重离子加速器冷却储存环(HIRFL-CSR)束运线电源参数数据库系统的设计优化。依托HIFEL-CSR的主数据库系统Oracle,设计了电源电流的读取界面,实现电源的实时监控,建立了新的电源参数数据库分系统,并实现了Oracle数据库系统和Access数据库系统的数据互存,建立了方便的参数打印、查询界面

    CSR电子冷却段磁场造成闭轨畸变及校正

    No full text
    电子冷却的应用提高了重离子储存环的束流品质,也为重离子储存环的运行带来了新的课题.电子冷却段的横向磁场在引导约束强流电子束的同时也不可避免影响了多次经过的离子轨道.为了保证束流的安全运行,必须将离子轨道的畸变部分限制在局部范围,并保证轨道畸变量对储存环接收度的影响可以容忍.讨论在建的兰州重离子储存环HIRFL-CSR电子冷却段磁场及其造成闭轨畸变和校正方案

    HIAF-CRing中的俘获加速效率研究

    No full text
    <span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">以HIAF-CRing上典型离子~(238)U~(34+)为研究对象,对其纵向俘获和加速的动力学过程进行了研究。累积后的粒子能量为800 MeV/u, 经过绝热俘获和加速后,粒子被加速至1 130 MeV/u。研究结果表明,通过选择适当的俘获时间、绝热参数以及相空间面积因子等参数,应用优化后的高频俘获加速曲线,可以获得更高的俘获和加速效率。通过粒子纵向动力学追踪软件ESM E上进行模拟,得到了优化后的高频相位、高频电压曲线,使得俘获效率达到99.3%,加速效率近乎100%。同时确定出了CRin g高频腔加速U~(34+)所需满足的特性参数,即电压需达到40 kV,频率范围是0:31s0:34 MHz。</span><span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">To reduce the beam loss during the capture and acceleration processes of CRing in HIAF project, the longitudinal beam motion is investigated using the typical ion of ~(238)U~(34+)during the two processes mentioned above. The ions will be captured adiabatically firstly and then will be accelerated from 800 to 1130 MeV/u with a high efficiency using optimized RF voltage and RF phase program. After that the bunched beam will be debunched for the later beam compression. Simulation of these processes by tracking appropriate distributions with the longitudinal beam dynamics code ESME has been used to find optimum parameters such as RF phase, RF voltage. The variation of the parameter during the RF cycle and the character parameters of the RF cavity are presented.</span
    corecore