2 research outputs found
[[alternative]]Study on the microstructure modification of tungsten trioxide/titania composite thin films by polyethylene glycol and their electrochromic properties
碩士[[abstract]]本研究以金屬鎢粉和雙氧水為起始物,添加聚乙二醇 (polyethylene glycol, PEG, MW = 20,000) 並以無水乙醇和二氯甲烷為共溶劑製備前驅物,利用溶膠/凝膠法搭配旋轉塗佈法,於 FTO 導電基材上製備三氧化鎢 (WO3) 薄膜。藉由改變 PEG 與鎢粉之重量比 (PEG / W),修飾所得 WO3 薄膜之微結構。利用穿透式電子顯微鏡和掃描式電子顯微鏡對薄膜進行表面成分、微結構分析,利用恆電位/恆電流儀和紫外光/可見光光譜儀同步量測進行定性與定量分析,量測薄膜之電化學行為、著/去色應答時間、著/去色吸收光譜、穿透度調幅以及著色效率。PEG 在系統中可抑制三氧化鎢晶型的生成。XRD 實驗結果顯示,當 PEG / W = 1/2 (w / w)時,薄膜為無晶型 (amorphous) 相態,但在高解析度穿透式電子顯微鏡觀察下可發現晶格線的存在,所以推測其為無晶型結構包覆著結晶型態的 WO3 薄膜。薄膜結構中觀察到大小約 5 ~ 8 nm 之微小孔洞分佈,推測為使去色時間較未修飾 WO3 薄膜快速的原因。W-P33 薄膜擁有最佳穿透度調幅 (ΔT = 93.95 % @ 700 nm),於 700 nm 波長之著色/去色應答時間為19.09 s / 3.82 s,著色效率為50.56 cm2/C。
修飾過之三氧化鎢薄膜中添加四丁氧基鈦 (Titanium(IV) n-butoxide, TTNB)作為光電子提供者,形成具光電致色變性質之薄膜。以上述薄膜為工作電極,濺鍍白金於 ITO 導電基材上為對電極,0.5 M 錪化鋰溶在碳酸丙烯酯為電解質溶液,形成三明治結構之光電致色變元件,並對元件進行照光性質分析。在無外加電場及開路電路狀態之下,將光電致色變元件放置紫外光曝光機下進行著色 (365 nm, 18 mW/cm2)。光電致色變實驗結果顯示,W90 (W / Ti = 90 / 10 (mol / mol)) 薄膜有較佳之光學性能,ΔT = 23.18 % (92.68 % ~ 69.50 %);電致色變顯示結果,W90 薄膜於 700 nm 波長下之穿透度調幅為 86.86 % (7.98 % ~ 94.84 %),著色/去色應答時間為 18.86 s / 3.17 s,著色效率為 43.79 cm2/C。[[abstract]]In this study, using the metal tungsten powder and hydrogen peroxide as starting materials, and adding polyethylene glycol (PEG, MW = 20,000) to prepare precursor. Dried anhydrous ethanol and dichloromethane as the solvent of the precursor prepared PEG-template WO3 thin film by sol / gel and spin coating method. Adding PEG to WO3 precursor to modify WO3 thin films microstructure by changing the ratio of PEG / W. The thin film surface component, microstructure analysis obtained from SEM and TEM respectively. In situ potentiostat / galvanostat and UV / Vis study of measuring quantitative and qualitative analysis (electrochemical performance, colored / bleaches state, modulation transmittance and coloration efficiency). Diffusion coefficient of Li ion in the thin film obtained from EIS. As PEG / W = 1 / 2 (w / w), WO3 thin film is amorphous phase by XRD. HR-TEM image reveals that the PEG-template WO3 thin film have line lattice with 5 ~ 8 nm. Combining the XRD, SEM and HT-TEM results, we conclude that the PEG-template WO3 thin film has porous nanostructure of nanocrysrtalline WO3 embedded in an amorphous WO3 matrix. W-P33 thin film has the much better electro-optical performance (ΔT = 93.95% @ 700 nm, tc / tb = 19.09 s / 3.82 s, C.E. = 50.56 cm2/C).
Adding TTNB, photoelectron provider, to be modified WO3 thin film to form photoelectrochromic devices. The above thin film was working electrode and sputtering Pt on the ITO was counter electrode. The electrolyte solution was 0.5 M LiI /PC. On open circuit state, PECD was placed under UV exposure machine (365 nm, 18 mW/cm2) for coloring. W90 (W / Ti = 90 / 10 (mol/mol)) thin film has much better optic properties (ΔT = 23.18 %, 92.68 % ~ 69.50 %). For electrochromic prpperties, it also has great performance (ΔT = 86.86 %, 7.98 % ~ 94.84 % @700 nm, tc / tb = 18.86 s / 3.17 s, C.E. = 43.79 cm2/C).[[tableofcontents]]目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 電致色變簡介 4
1-2-1 電致色變材料 4
1-2-2 電致色變性能參數介紹 6
1-2-3 電致色變元件 8
1-2-4 電致色變元件之類型 9
1-2-5 WO3電致色變材料 11
1-2-6 WO3變色機制 12
1-3 光電致色變系統介紹 13
1-3-1 光電致色變元件 14
1-3-2 光電致色變元件之操作條件 16
1-4 研究動機與目的 18
第二章 文獻回顧 19
2-1 WO3 薄膜製備 19
2-2 WO3 薄膜改質研究 20
2-2-1 摻雜高分子之 WO3 薄膜 20
2-2-2 摻雜奈米金屬顆粒之 WO3 薄膜 24
2-2-3 摻雜其他物質之 WO3 薄膜 28
2-3 光電致色變元件研究 31
第三章 實驗設備與方法 33
3-1 儀器設備 33
3-2 實驗藥品 35
3-3 實驗方法 37
3-3-1 系統架構 37
3-3-2 導電基材的前處理 39
3-3-3 WO3 薄膜製備之程序 39
3-3-3-1 WO3 薄膜之製備 39
3-3-3-2 白金黑之製備 41
3-3-3-3 無水乙醇之製備 42
3-3-4 修飾WO3 膜之製備 43
3-3-5 修飾 WO3 / TiOx 複合薄膜之製備 43
3-3-6 光電致色變元件組裝 44
3-4 實驗分析 45
3-4-1 電化學特性分析 45
3-4-2 光學特性分析 47
3-4-3 薄膜厚度量測 48
3-4-4 薄膜表面型態與組成分析 48
3-4-5 薄膜晶相與結晶度分析 48
第四章 結果與討論 49
4-1 利用 PEG 修飾 WO3 薄膜之製備及其性質分析 49
4-1-1 添加 PEG 對 WO3 薄膜之影響 49
4-1-1-1 表面微結構分析 (SEM) 49
4-1-1-2 穿透式電子顯微鏡分析 (TEM) 56
4-1-1-3 薄膜厚度分析 (Surfcorder) 58
4-1-1-4 晶格結構分析 (XRD) 59
4-1-2 電致色變性質分析 62
4-1-2-1 電化學行為 62
4-1-2-2 薄膜之紫外光/可見光光譜分析 66
4-1-2-3 著色效率與應答時間 76
4-1-2-4 薄膜之穩定性 82
4-2 W / TI 莫耳比對用 PEG 修飾 WO3 / TIOX 複合薄膜之製備及其性質分析 87
4-2-1 添加 PEG 對 WO3 / TiOx 複合薄膜之影響 87
4-2-1-1表面微結構分析 (SEM) 89
4-2-1-2 組成成分分析 (EDS) 93
4-2-1-3 晶格結構分析 (XRD) 94
4-2-1-4 薄膜厚度分析 (surfcorder) 95
4-2-2 添加 PEG 於 WO3 / TiOx 複合薄膜之電致色變性質 96
4-2-2-1 電化學行為 96
4-2-2-2 薄膜之紫外光/可見光光譜分析 100
4-2-2-3著色效率與應答時間 104
4-2-3 添加 PEG 於 WO3 / TiOx 複合薄膜之光電致色變性質 108
第五章 結論 109
建議 110
參考文獻 111
附錄 A 118
附錄 B 119
附錄 C 120
附錄 D 121
附錄 E 122
附錄 F 123
圖目錄
圖1-1、美國 View 公司所產出之電致色變-智慧型窗戶 3
圖1-2、取平衡時間的 95 % 為應答時間之示意圖 7
圖1-3、電致色變元件工作原理示意圖 9
圖1-4、溶液型電致色變元件的組合 10
圖1-5、混合型電致色變元件的組合 10
圖1-6、薄膜型電致色變元件的組合 11
圖1-7、複合層光電致色變元件 (電致色變層和光觸媒層在同一電極上) 14
圖1-8、分離層光電致色變元件 (電致色變層和光觸媒層在不同電極上) 15
圖1-9、使用染敏太陽能電池之光電致色變窗戶結構示意圖 16
圖1-10、光電致色變元件於不同環境下之操作模式 17
圖3-1、實驗架構流程圖 38
圖3-2、過氧鎢酸水溶液 (PTA) 40
圖3-3、旋轉塗佈之工作面積示意圖 40
圖3-4、WO3 薄膜製備之流程圖 41
圖3-5、製備無水乙醇之裝置 42
圖3-6、光電致色變元件示意圖 44
圖3-7、電化學量測之裝置圖 46
圖3-8、紫外光/可見光光譜儀結合恆電流/恆電位儀,進行光學量測裝置圖 47
圖3-9、以表面輪廓儀量測薄膜厚度之示意圖 48
圖4-1、不同含量 PEG 溶於前驅物溶液中所形成的 WO3 薄膜中之 SEM 圖 (500倍) 52
圖4-2、不同含量 PEG 溶於前驅物溶液中所形成的 WO3 薄膜中之 SEM 圖(十萬倍) 55
圖4-3、W-P33 薄膜之(a)TEM (b)HR-TEM 57
圖4-4、相同旋轉塗佈條件之下 (1000 rpm, 60 s) ,不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之膜厚分析圖 58
圖4-5、相同著色電量 (Qc) 之下,不同含量 PEG 溶於前驅物溶液中所形成的 WO3 薄膜中之膜厚分析圖 59
圖4-6、不同熱處理溫度下的 WO3 薄膜之 XRD 圖 60
圖4-7、熱處理溫度為 350oC 時的 WO3 和 PEG / WO3 薄膜之 XRD 圖 61
圖4-8、相同旋轉塗佈條件之下 (1000 rpm, 60 s),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之循環伏安圖 (50 mV/s, 10 圈)。 65
圖4-9、相同旋轉塗佈條件之下 (1000 rpm, 60 s),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之循環伏安圖 (第 10 圈疊圖) 65
圖4-10、相同旋轉塗佈條件之下 (1000 rpm, 60 s),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之紫外光/可見光光譜分析圖 67
圖4-11、相同著色電量 (Qc) 之下,不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之紫外光/可見光光譜分析 67
圖4-12、相同旋轉塗佈條件之下 (1000 rpm, 60 s),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之穿透度調幅圖 70
圖4-13、相同著色電量 (Qc),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之穿透度調幅圖 73
圖4-14、相同著色電量 (Qc) 之下,不同 PEG / W 比例之穿透度調幅比較圖 74
圖4-15、相同旋轉塗佈條件之下 (1000 rpm, 60 s),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之 (a)時間-電流圖 (b)應答時間圖 77
圖4-16、相同著色電量 (Qc) 之下,不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之 (a)時間-電流圖 (b)應答時間圖 78
圖4-17、相同著色電量 (Qc) 之下,不同 PEG / W 比例之著色效率比較圖 79
圖4-18、相同著色電量 (Qc) 之下,不同 PEG / W 比例之應答時間比較圖 79
圖4-19、掃描 100 圈 (50 mV/s)。(a)WO3e (b)W-P33 83
圖4-20、CV 掃描 100 圈後之吸收度-波長圖。(a)WO3e (b)W-P33 84
圖4-21、經過不同CV掃描圈數下之吸收度-時間圖。(a)WO3e (b)W-P33 85
圖4-22、剛配置完之 W / Ti 前驅物 87
圖4-23、靜置 13 h 後之 W / Ti 前驅物 87
圖4-24、添加 PEG 修飾 WO3 / TiOx 薄膜之 SEM 圖 (十萬倍) 92
圖4-25、添加 PEG 修飾 WO3 / TiOx 薄膜之 XRD 圖 94
圖4-26、添加 PEG 於 WO3 / TiOx 薄膜之膜厚比較圖 95
圖4-27、添加 PEG 於 WO3 / TiOx 複合薄膜之循環伏安圖 99
圖4-28、添加 PEG 於 WO3 / TiOx 複合薄膜之循環伏安圖 (第10圈疊圖) 99
圖4-29、添加 PEG 於 WO3 / TiOx 複合薄膜之可見光/紫外光光譜分析 100
圖4-30、添加 PEG 於 WO3 / TiOx 複合薄膜之穿透度調幅圖 103
圖4-31、添加 PEG 修飾 WO3 / TiOx 薄膜,不同 W / Ti 莫耳比之穿透度調幅比較圖 (700 nm) 103
圖4-32、添加 PEG 於 WO3 / TiOx 複合薄膜之應答時間分析圖 104
圖4-33、添加 PEG 修飾 WO3 / TiOx 薄膜,不同 W / Ti 莫耳比之應答時間比較圖 105
圖4-34、添加 PEG 修飾 WO3 / TiOx 薄膜,不同 W / Ti 莫耳比之著色效率比較圖 106
圖4-35、PEG / WO3 / TiOx 複合薄膜之 PECD 紫外光/可見光光譜分析比較圖 108
表目錄
表1-1、電致色變材料的分類 5
表2-1、摻雜 PEG 之電致色變 WO3 薄膜整理 22
表2-2、浸塗法拉伸二次 (雙層) 之 X / WO3 複合薄膜光學性質比較表 25
表2-3、浸塗法拉伸三次 (三層) 之 X / WO3 複合薄膜光學性質比較表 25
表2-4、摻雜奈米金屬之電致色變 WO3 薄膜整理 26
表2-5、添加不同量 MWCNT 之 WO3 光電性能比較表 30
表4-1、相同旋轉塗佈條件之下 (1000 rpm, 60s),不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之光電性質表 80
表4-2、相同著色電量 (Qc) 之下,不同 PEG 含量溶於前驅物溶液中所形成的 WO3 薄膜之光電性質表 81
表4-3、利用 CV 掃描不同圈數之應答時間比較表 86
表4-4、利用 CV 掃描不同圈數之吸收度比較表 86
表4-5、添加 PEG 修飾 WO3 / TiOx 薄膜之組成成分分析表 93
表4-6、添加 PEG 於 WO3 / TiOx 複合薄膜之光學性質分析表 107
表4-7、添加 PEG 於 WO3 / TiOx 複合薄膜之電化學性質分析表 107
表4-8、PECD 之穿透度調幅比較表 108[[note]]學號: 600400518, 學年度: 10
[[alternative]]A Study on the Microstructure Modification of Tungsten Trioxide Thin Films by Polyethylene Glycol and Their Electrochromic Properties
[[sponsorship]]中華民國界面科學學會[[conferencetype]]國內[[conferencedate]]20130712[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]台北市, 台
