53 research outputs found

    High-dimensional regression adjustments in randomized experiments

    Full text link
    We study the problem of treatment effect estimation in randomized experiments with high-dimensional covariate information, and show that essentially any risk-consistent regression adjustment can be used to obtain efficient estimates of the average treatment effect. Our results considerably extend the range of settings where high-dimensional regression adjustments are guaranteed to provide valid inference about the population average treatment effect. We then propose cross-estimation, a simple method for obtaining finite-sample-unbiased treatment effect estimates that leverages high-dimensional regression adjustments. Our method can be used when the regression model is estimated using the lasso, the elastic net, subset selection, etc. Finally, we extend our analysis to allow for adaptive specification search via cross-validation, and flexible non-parametric regression adjustments with machine learning methods such as random forests or neural networks.Comment: To appear in the Proceedings of the National Academy of Sciences. The present draft does not reflect final copyediting by the PNAS staf

    Augmented reality manipulatives: New mathematical tools for classrooms

    Get PDF
    We are a group of practitioners and researchers dedicated to exploring Augmented Reality (AR) innovations for use in mathematics education. At the ATM Virtual Conference (October 2022), merging the themes of Use of Manipulatives and Around Computational Thinking, we led a workshop for members to get to grips with AR manipulatives on their own devices. Using GeoGebra 3D Calculator with AR (henceforth GeoGebra 3D/AR), we designed seven AR manipulatives and associated tasks, two of which were interactively ‘walked through’ during the workshop. In this article, we present an established framework for AR manipulatives, discuss how these manipulatives may be used to support mathematical thinking, consider the affordances and limitations of these new tools, and briefly cover the range of curriculum-aligned AR tasks we have created. These AR manipulatives and tasks are freely available within an online booklet we created for the conference: http://bit.ly/ATMWS. We conclude by looking at what the future might hold for this exciting and innovative technology

    A reporter system for assaying influenza virus RNP functionality based on secreted Gaussia luciferase activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A virus can infect a wide variety of animal species including humans, pigs, birds and other species. Viral ribonucleoprotein (vRNP) was involved in genome replication, transcription and host adaptation. Currently, firefly luciferase (Fluc) reporter system was used in vRNP functional assay. However, its limitation for the testing by virus infection resulted in an increased need for rapid, sensitive, and biosafe techniques. Here, an influenza A virus UTR-driven gene reporter for vRNP assay based on secreted <it>Gaussia </it>luciferase (Gluc) activity was evaluated.</p> <p>Results</p> <p>By measuring Gluc levels in supernatants, reporter gene activity could be detected and quantitated after either reconstitution of influenza A virus polymerase complex or viral infection of 293T and A549 cells, respectively. As compared with Fluc reporter, Gluc-based reporter was heat-tolerant (65°C for 30 min) and produced 50-fold higher bioluminescent activity at 24 h posttransfection. Signals generated by Gluc reporter gene could be detected as early as 6 h post-infection and accumulated with time. Testing by viral infection, stronger signals were detected by Gluc reporter at a MOI of 0.001 than that of 1 and the effects of PB2-627K/E or amantadine on influenza vRNP activity were elucidated more effectively by the Gluc reporter system.</p> <p>Conclusions</p> <p>This approach provided a rapid, sensitive, and biosafe assay of influenza vRNP function, particularly for the highly pathogenic avian influenza viruses.</p

    Integrative transcriptome analysis reveals alternative polyadenylation potentially contributes to GCRV early infection

    Get PDF
    IntroductionGrass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered to be the most pathogenic aquareovirus. Productive viral infection requires extensive interactions between viruses and host cells. However, the molecular mechanisms underlying GCRV early infection remains elusive.MethodsIn this study we performed transcriptome and DNA methylome analyses with Ctenopharyngodon idellus kidney (CIK) cells infected with GCRV at 0, 4, and 8 h post infection (hpi), respectively.ResultsWe found that at early infection stage the differentially expressed genes related to defense response and immune response in CIK cells are activated. Although DNA methylation pattern of CIK cells 8 hpi is similar to mock-infected cells, we identified a considerable number of genes that selectively utilize alternative polyadenylation sites. Particularly, we found that biological processes of cytoskeleton organization and regulation of microtubule polymerization are statistically enriched in the genes with altered 3’UTRs.DiscussionOur results suggest that alternative polyadenylation potentially contributes to GCRV early infection

    BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate

    Get PDF
    Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive.Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor.Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression.Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore