88 research outputs found

    立體圖的製作原理

    No full text
    [[issue]]246

    Specific morphological and genetic variations of cutlassfish (Trichiurus spp.)

    No full text
    帶魚是一類高經濟價值的底棲性魚類,其中又以白帶魚(Trichiurus lepturus)最為重要。 白帶魚在全球三大洋都有分布,產量大多集中在西北太平洋陸棚地區,佔全球總產量80%以上。 先前的研究認為,在西北太平洋陸棚地區的帶魚屬魚類只有白帶魚一個物種,但近年研究指出,在此區域可能有三種帶魚屬魚類。 台灣附近水域先前研究亦指出僅有一種帶魚屬魚類,但在外表上卻有兩型。 本論文利用傳統形態形質特徵、幾何形態測量特徵及粒線體DNA分子特徵來探討帶魚屬的種間及種內之關係。 由形態資料分析發現,所採樣的帶魚屬魚類可以區分出三個有效物種: Trichiurus lepturus Linnaeus, 1758 (白帶魚),T. nanhaiensis Wang and Xu et al., 1992 (南海帶魚)和T. brevis Wang and You et al., 1992 (短帶魚) 。利用幾何形態測量特徵分析發現,三者在外廓上有明顯差異,並可由眼徑、體高、全長、背鰭起始點到鰓蓋骨後緣長度、上顎先端到背鰭起始點長度等利用判別函數加以區分。 三者在粒線體DNA的Cyt b基因序列分析上,可以明顯區分出來,其結果與形態資料一致。 三種帶魚間其DNA兩兩間差異均大於10%,且沒有鑲嵌現象。 本研究結果顯示,在西北太平洋水域的帶魚屬魚類,應有三物種: Trichiurus lepturus Linnaeus, 1758 (白帶魚),T. nanhaiensis Wang and Xu et al., 1992 (南海帶魚)和T. brevis Wang and You et al., 1992 (短帶魚)。 本報告並重新整理這些物種命名的問題。The cutlassfish (Trichiurus spp.) is a group of ribbon-like demersal fishes inhabited in continental shelf with high commercial value in the world. The most important species is the cosmopolitan one, Trichiurus lepturus, which distribute across tropical and subtropical waters worldwide. Most of the commercial catches of cutlassfish come from the shelf regions of northwest Pacific, in which area the landings accounted to 80% of the world catches. Previous studies indicate that, one species of the Trichiurus occurred in the regions of northwest Pacific. In recent studies, three species have been added to taxonomic and faunal lists in the region. In the waters around Taiwan, there were 2 phenotypes can be identified similar to T. lepturus, however it is contentious that 2 phena or 2 species should be estimated from morphological and biogeographic analysis. In this study, I apply quantitative methods to analyze morphological characters and molecular markers dually, and expect to solve those taxonomic problems and to clarify the nomenclature status of Trichiurus. The results showed that there are three valid species identified in our samples collected from the vicinity waters around Taiwan; T. lepturus, T. nanhaiensis and T. brevis. Trichiurus brevis is the most distinctive among the three species by having less than 35 dorsal fin elements, and the separation of T. nanhaiensis from T. lepturus is based on fusion or not of forntal bone. Principal component and discrimination function analysis confirmed previous finding with statistical significance (<0.3% mis-identification). Partitioning of molecular variance indicated that more than 10% of variations were ascribed to inter-specific, and the specific taxonomic status is firmly supported.目 錄 目錄.................................................................................................................................Ⅰ 摘要............................................................................................................................Ⅵ Abstract......................................................................................................................Ⅴ 壹、前 言 一、帶魚..................................................................................................................1 1.分布及生態.......................................................................................................1 2.資源及漁業.......................................................................................................1 3.分類及學名之變遷...........................................................................................2 二、分子特徵...............................................................................................................4 1.分子技術...........................................................................................................4 2.同功異構酶....................................................................................................5 3.粒線體DNA...........................................................................................................5 三、研究目的...............................................................................................................6 貳、材料與方法 一、樣本的採集及保存……..................................................................................8 二、資料集..............................................................................................................9 1.傳統形態.........................................................................................................9 2.幾何形態................................................................................................................9 3.核苷酸序列............................................................................................................9 3.1. 全DNA之萃取................................................................................................9 3.2. mtCyt b增幅...................................................................................................10 3.3. mtCyt b定序...................................................................................................10 三、資料分析.............................................................................................................11 1.傳統形態測量......................................................................................................11 2.幾何形態測量......................................................................................................11 3.核苷酸序列..........................................................................................................11 3.1.序列校準.........................................................................................................11 3.2.遺傳距離、個體相似性及物種類緣關係樹...................................................12 3.3.族群遺傳距離與地理距離的相關性檢定…............................................12 3.4.族群間分化程度估算.....................................................................................13 参、結果 一、一般形態測定.....................................................................................................14 1.計數形質..............................................................................................................14 2.測量形質..............................................................................................................14 2.1.體高相對於體長.............................................................................................14 2.2.體重相對於體長.............................................................................................14 2.3.去內臟後體重相對於體長.............................................................................15 2.4.肛前長相對於體長.........................................................................................15 2.5.頭長相對於體長.............................................................................................15 2.6 眼徑相對於頭長..........................................................................................16 2.7 眶間距相對於頭長........................................................................................16 二、幾何形態測量.....................................................................................................17 1. 主成分分析........................................................................................................17 2. 判別函數............................................................................................................17 三、分子性狀分析.....................................................................................................17 1. mtCyt b定序結果................................................................................................17 2. 物種相似性........................................................................................................19 2.1核苷酸序列差異..............................................................................................19 2.2 物種分叉圖....................................................................................................19 2.3. 基因間之距離...............................................................................................19 3.白帶魚系群之族群遺傳......................................................................................20 3.1 遺傳距離與地理距離....................................................................................20 3.2 族群間分化程度............................................................................................20 肆、討論 一、帶魚屬物種之形態及基因差異....................................................................21 1形態上的差異..........................................................................................21 2. 粒線體Cyt b基因.........................................................................................23 二、與前人研究之比較......................................................................................23 三、目前帶魚的命名問題....................................................................................25 伍、參考文獻..............................................................................................................28 Tables.........................................................................................................................32 Figure Legends............................................................................................................42 Figures........................................................................................................................4

    Phylogeography and stock structure of cutlassfish in the Indo-West Pacific

    No full text
    帶魚科(Trichiuridae)的物種具高經濟價值,是許多漁業的捕撈目標。 帶魚是兇猛的掠食魚類,在生態系統上扮演重要的角色。 本科魚類特化的外型,使本科的分類學統整相對比較不容易,過去關於本科內屬間的亞科的歸屬關係、帶魚屬內物種的分類狀況及最常見之日本帶魚系群結構都存在著一些爭議。 本論文利用傳統型態測量、幾何型態測量及粒線體DNA來作為工具,以協助釐清帶魚科之系統分類、確認帶魚屬的物種分類狀態與演化關係及釐清西北太平洋地區日本帶魚(T. japonicus)之族群結構。 利用粒線體DNA分析本科內9屬的物種結果顯示,隱足帶魚亞科(Aphanopodinae)及帶魚亞科(Trichiurinae)為單源系關係,但鱗足帶魚亞科(Lepidopodinae)則否。 若將共同有尾鰭消失及臀鰭退化隱於皮下特徵之小帶魚屬(Eupleurogrammus) 及狹顱帶魚屬(Tentoriceps)歸類到帶魚亞科當中,則更符合單源系原則。 另外棘背帶魚屬(Assurger)則與深海帶魚屬呈現相對小的間隙(gap),因此建議將棘背帶魚屬合併到深海帶魚屬當中,棘背帶魚學名回歸最初命名--Assurger anzac Alexander, 1917。 沙帶魚屬(Lepturacanthus)亦與帶魚屬呈現緊密關係,且沙帶魚屬為旁係關係,因此亦建議合併到帶魚屬當中。 由外部型態分析及粒線體DNA分析的結果均認為,原先認為西北太平洋區域的白帶魚複合體(T. lepturus complex),應區分為三個物種:白帶魚(T. lepturus)、日本帶魚(T. japonicus)及南海帶魚(T. nanhaiensis)。 利用傳統型態分析結果三物種在測量形質的比例上皆有顯著差異,但部分有重疊。 利用幾何型態分析抽取出形狀的參數(H)則可以區分出此3物種,貢獻度最大的前兩個變數分別代表可以代表體高及肛前背鰭基底長,利用全長對體高的比例及全長對肛前背鰭基底長的比例可以區分出此3物種。 粒線體DNA重建的類緣關係顯示,此3物種可以區分為3群,彼此間沒有鑲嵌的現象,分子變異數分析也顯示主要的變異均集中在物種之間(ΦCT = 0.967)。 帶魚屬物種類緣地理的分析結果顯示,所有的物種的種化事件大約都在8.5百萬年前中新世(Miocene)晚期發生,地點可能在今日中南半島、蘇門達臘及婆羅洲之間的區域。 日本帶魚族群結構分析顯示, 日本帶魚有高的單倍基因型多樣性(0.97 - 0.99),但核酸多樣性不高(0.005 - 0.009),顯示可能族群曾歷經瓶頸效應,之後族群再度擴張。 分子變異數分析(AMOVA)認為將此區域族群劃分為泛-東海群(包含黃海、東海、及台灣海峽)及南海群時,分佈於群間的變異為最大(ΦCT = 0.165),此結果顯示台灣海峽為日本帶魚的屏障,阻隔了東海及南海的基因交流。 然而從類緣關係分析發現東海及南海的分支當中有鑲嵌的現象,顯示過去南海仍透過台灣海峽與東海交換部分個體。 今日東海及南海之間的族群,主要因台灣海峽的季節流場變化及帶魚幼魚跨越海區界線的能力,所以無法有效交流。 根據溯祖理論推估,西北太平洋地區的日本帶魚族群分化,應始於更新世中期最大冰期事件,之後當冰層消融海水上升之後族群開始擴張而形成今日的族群。 本研究建議以兩個系群的管理模式,即東海系群與南海系群,來進行資源管理。Abstract The trichiurid fishes commonly called hairtails are important resources for various types of fisheries. Hairtails, being situated on the top of trophic pyramid, also play important roles in the demersal eco-systems. Due to highly specialized external appearance, the taxonomic status of hairtails is ambiguous as compared to the other fishes ranging from subfamily down to population levels. In this study, we used traditional measurements, geometric morphometrics and mitochondrial DNA as tool to reveal the phylogenetic relationships among genera, the species status of the genus Trichiurus and the population structure of T. japonicus in the western North Pacific. The phylogenetic trees among 9 genera showed that both Aphanopodinae and Trichiurinae are monophyletic groups, but not for Lepidopodinae. We suggest putting Eupleurogrammus and Tentoriceps to Trichiurinae, because they all shared with apomorph of reduced anal and caudal fins. In addition, Assurger and Evoxymetopon showed so closed relationship that they should combine into a complete genus. Similarly, due to closed relationship between Lepturacanthus and Trichiurus and paraphyly of Lepturacanthus, we also suggest that they belong to a same genus. The results from morphological and mitochondrial analyses showed that there are three valid species contained in the "T. lepturus" complex -- T. lepturus, T. japonicus and T. nanhaiensis. Traditional measurements showed that the ratio of measurements pairs were significant but overlapping. However, the shear (shape component, H) had fine resolution power to discriminate three species without overlapping. The first and second contributed of variables for the shear were represented body depth and preanal dorsal fin based length. Therefore, three species can be separated by using these two measurements compared to their total length. The phylogenetic relationships showed three distinct groups with no outliers. AMOVA showed that the major component of the variances concentrated among species (ΦCT = 0.967). The analyses of phylogeography of Trichiurus showed that all speciation events occurred around 8.5 million years ago in tropic waters among Indo-China, Sumatra and Borneo during the late Miocene. The high haplotype diversities (0.97-0.99) with moderate nucleotide diversities (0.005 - 0.009) might result from historical bottleneck and subsequently population expansion. Populations in the area were sub-structured into two groups of the SCS and pan-ECS (ECS+TS+YS), confirmed by AMOVA (ΦCT = 0.165). These results indicate that the TS served as a barrier, which interrupts mixture between populations in the ECS and SCS. However, intermittent gene flow were also traceable in the phylogenetic analyses, indicating that the SCS gained a small number of migrants from the TS. Limited larval dispersal ability across marine boundaries and monsoon-influenced flow patterns in the TS well explain a non-panmictic structuring. Coalescent theory estimated that the populations were subdivided during the middle Pleistocene glacial maxima, and expanded when the ice sheets retreated. Two management stocks are suggested for conservation purposes; i.e., the ECS (including the TS) and the SCS, to strengthen current fishery regulatory programs

    钛合金表面织构化与构建生物活性涂层的研究进展

    No full text
    医用钛合金作为临时基质的植入材料对周围新组织的生长具有特殊的诱导作用。针对椎弓根螺钉固定系统对钛合金基材表面机械性能和生物活性的共同需求,表面织构与生物活性涂层对钛合金表面的改性展示出独特的优越性。文中详细介绍了钛合金表面织构化对其摩擦学性能和生物相容性的影响,以及构建生物活性涂层的种类;总结了钛合金表面织构的作用机理,生物活性涂层的改善机制,阐述了表面织构化与构建生物活性涂层各自的局限性,并指出钛合金作为生物医用材料仍需要解决的问题及未来的研究趋势

    基于聚倍半硅氧烷改性的耐高温涂料及其应用

    No full text
    本发明公开了一种基于聚倍半硅氧烷改性的耐高温涂料及其应用。在一些实施例中,所述耐高温涂料包含按照质量百分比计算的如下组分:改性有机树脂15%~30%,改性颜填料25%~50%,分散剂1%~5%,流平剂0.1%~3%,复合助剂0.2%~3%,溶剂3%~20%。本发明通过使用聚倍半硅氧烷作为改性剂对成膜树脂和颜填料进行改性,可以进一步提升耐高温涂料的品质,并有效提高涂层的综合性能,特别是能大幅提升涂层在高温条件下的硬度、稳定性、抗划伤能力、致密性和抗开裂性能

    海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展

    No full text
    随着"建设海洋强国"战略的实施,发展海洋装备、建设海洋工程成为推进和实施国家海洋战略的重要内容。鉴于海洋装备长期服役于海洋环境,因此海洋工程材料的腐蚀损伤是不可回避的关键问题,尤其是海洋装备中的运转部件,如海水泵、阀、海水液压传动系统、水下作业机器手、深海勘探和开采装备等面临腐蚀与磨损的耦合损伤。基于此,针对典型金属材料在海水环境中的腐蚀磨损失效行为及机理,综述了服役工况、腐蚀介质、电化学及材料因素对典型金属材料(如不锈钢、钛合金、铝合金、镍合金)在海水环境中腐蚀磨损性能的影响,综合分析了服役工况、腐蚀介质浓度、p H值、外加电位与材料性能之间的关系,阐明了金属材料腐蚀磨损过程中腐蚀、磨损及其交互作用。在此基础上,对比了一系列耐磨与防腐一体化涂层技术,如PVD涂层、热喷涂涂层、电镀涂层及聚合物粘结涂层的腐蚀磨损性能及典型应用,分析了耐磨与防腐一体化防护材料对腐蚀磨损性能的优化机理,以期为解决金属材料的腐蚀磨损问题提供有益借鉴

    表层具有生物活性的组织工程材料及制备方法

    No full text
    本发明公开了一种表层具有生物活性的组织工程材料及其制备方法。该组织工程材料包括生物可降解高分子材料基体和吸附于所述基体表面的多巴胺层,且所述多巴胺层上连接有生物活性聚合物。其制备方法包括:提供表面充分湿化的生物可降解高分子材料基体;提供溶有多巴胺和生物活性聚合物的缓冲液体系;以及,将所述基体于所述缓冲液体系内充分浸泡,在30~40℃下孵育1~5h后取出,经风干后获得所述表层具有生物活性的组织工程材料。本发明的组织工程材料不仅具有较高的力学性能和可控降解性能,同时还具有良好生物活性,利于促进细胞的粘附、增殖,同时其制备工艺简单,易于操作,成本低廉,利于规模化实施

    石墨烯/聚酯/环氧粉末涂层耐腐蚀性研究

    No full text
    将聚酯树脂与环氧树脂分别与石墨烯干粉在160℃不锈钢反应锅中高速熔融混合,制得石墨烯/聚酯预分散体、石墨烯/环氧预分散体,然后将该预分散体与树脂、颜料、填料、助剂进行物理预混合与熔融挤出混合,经由粉碎、分级后,得到含有石墨烯成分的防腐性粉末涂料。涂层性能测试结果表明:石墨烯的加入能够显著提高涂层的防腐蚀性能,尤其是耐盐雾性能超过1 000 h,同时耐老化性能也有显著改善。另外,通过试喷涂制作样片时,发现粉末涂料的穿透性和上粉性能都得到很大提高

    一种亲油性聚氨酯海绵及其制备方法

    No full text
    本发明提供了一种亲油性聚氨酯海绵及其制备方法。该亲油性聚氨酯海绵以多孔聚氨酯海绵为基体,基体上接枝有亲水疏油的C-C长链基团。作为一种实现方式,采用聚氨酯海绵与含C-C长链的酰氯化合物反应,使聚氨酯中的氨基、羟基与-C(O)Cl官能团通过化学键键合而将C-C长链接枝在聚氨酯海绵上。实验证实,该结构能够大大降低聚氨酯海绵的表面能,使其吸油能力大幅度提高,并且价格低廉、无毒无污染,因此是一种良好的油类吸附材料,可应用于原油泄漏等场合快速、高效地吸附回收原油等物质
    corecore