12 research outputs found
長期施用磷肥對土壤性質之影響
試驗材料為台灣糖業試驗所提供的三種土壤:⑴溪湖二林糖廠(粘板砂頁沖積土),
⑵旗山月眉糖廠(紅黃灰化壤),⑶高雄西青埔糖廠(紅黃灰化壤)。分別採得自5
2/53∼67/68年期,連續施用P2O5200Kg/ha-期,及未施磷肥的土壤為
對照組,分項進行試驗比較,其結果如下:
⑴磷素具有穩定土壤的功能,使土壤沖蝕流失量減少,此效應在粘粒含量較高的旗山
、高雄土壤有顯著差異。
⑵磷素使土壤有較佳的團粒構造及較高的有機質含量,所以由土壤水分特性曲線得知
施用磷素的土壤其保水能力顯著增加。
⑶磷素的施用可降低土壤零電零(pH0 ),增加其負電荷,提高陽離子之交換能量。
⑷在酸性土壤中,磷素的施用會增加交換性鋁的含量。
⑸連續二十年少量施用磷素,並不至放改變土壤中的粘土礦物
Analysis Techniques of Sediment Yields of Potential Debris Flow
台灣位於歐亞大陸板塊與菲律賓海洋板塊交界處,地質活動頻繁,地層年代輕且破碎,地質構造複雜,加上地震以及豪大雨,容易引發山崩、地滑及土石流,也常引發山區大規模之山坡地土砂災害,而每年之颱風豪雨侵襲,更加劇土砂災害的發生,對生命財產及國家經濟損失構成莫大傷害。
本研究主要目的在瞭解台灣歷年重大土砂災害之發生機制、過程與產砂結果,並分別發展集水區土砂生產量分析技術及土石流災害模擬技術,以提升土砂防災能力。在土石流未發生情況下,本研究利用美國環保署(USEPA)與Hydrocomp Inc.所共同發展之WINHSPF模式,進行集水區內非點源之坡面土壤沖蝕量推估,以及利用美國地質調查所(USGS)發展之TRIGRS模式,進行點源之坡地崩塌土砂量估算,以便將集水區之土砂生產過程完整納入。其中,並考量降雨-逕流、土砂生產、土砂輸送及土砂流出等四種機制,建立一套集水區土砂生產量推估模式。另外,在土石流發生情況下,本研究採用FLO-2D土石流災害模擬技術,並配合學者所提之經驗公式,進行參數研究及模式驗證。最後,針對土石流潛勢溪流集水區土砂災害,建立一套合理且完整之評估模式。
本研究以花蓮縣秀林地區之土石流潛勢溪流集水區作為研究區域,並採用歷史颱風資料進行模式之參數率定與驗證。隨之,再利用100年重現期之24小時雨量,進行土石流未發生與發生情況下之土砂生產量計算。由分析結果可知,在土石流未發生情況下,其土砂生產量在考量坡面沖蝕(非點源)及坡面崩塌(點源)條件下之計算量體,較僅考量坡面沖蝕者約高出1.1至13.8倍。此顯示淺層崩塌對集水區土砂生產量,有顯著的貢獻。此亦說明集水區土砂生產量推估,應同時考慮坡面土壤沖蝕與坡地崩塌兩種土砂來源。此外,分析成果顯示:在土石流發生情況下,採用FLO-2D降雨-逕流模組及土砂平衡濃度計算土砂生產量,約為未發生土石流情況下,利用WINHSPF模式計算之土砂生產量之14.2倍。由於土石流發生時可能帶來的嚴重損失與災害,所以土石流是否發生之判釋,就顯得格外重要。
本研究除建立上述分析技術外,並提出集水區治理及土砂防災工作之應用,如災害影響範圍劃定、土砂災損風險評估、工程整治成效評估及集水區土砂生產量推估等,並以花蓮縣秀林地區為研究區域,對於近年土砂災害頻傳之問題,可減少或避免土砂災害帶來之衝擊有實質助益。同時,本研究成果可提供未來建構土石流潛勢溪流集水區安全防護網之重要參考。Taiwan is located at the junction of the Eurasian and Philippine Sea plates. The geologic characteristics of this area are frequent geological activity, young geological age, fragile rocks, and complicated geological structures. Seismic activity and torrential rain may easily trigger landslides, slope failure, debris flow, and large scale sediment-related hazards. Particulary during summer season from July to October, intense typhoon events in Taiwan may increase the occurrence of sediment-related hazards. Consequently, the sediment-related hazards result in the loss of human life, property and inflict damage to the economy.
In this study, the estimation methods of sediment yields and simulation techniques of debris flow in debris-flow potential watersheds were developed to investigate the occurrence mechanisms, transportation process, and sediment yields to enhance the preventive capabilities and skills against the sediment-ralated hazard. For debris-flow non-occurrence condition, the WINHSPF and TRIGRS models were used for predicting the sediment yield resulted from soil erosion and shallow landslide in which four processes, namely, rainfall-runoff, sediment yields, sediment transport, and sediment runoff were taken into accouted. In addition, for debris-flow occurrence condition, the FLO-2D model incorporated with empirical equations were adopted for calculating sediment yields due to debris flow.
In the present study, an attempt was made to develop an integrated method considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate the sediment yields from a debris-flow potential watershed on a storm event basis. The proposed method was implemented to debris-flow potential watersheds located in the Siou-Lin Township of Hualien County in which numerous data encompassed the hourly rainfall, historical streamflow and sediment monitoring and event-based landslide inventory maps were used for a systematic calibration and validation of numerical models.
The validity of numerical models in the integrated method was verified by comparing the sediment yield from numerical simulations with those from field observations of several typhoon events. In the model verifications, a 24 hrs design hyetograph of 100 years return period was employed for the numerical simulation of sediment yield within the study area. For debris-flow non-occurrence scenarios, the numerical results show that the sediment yields from soil erosions and landslides were found to be about 1.1 to 13.8 times of those merely from soil erosion and these demonstrate that the significance of shallow landslide as a source of sediment supply in sediment yields estimation. Moreover, a comparison of sediment yields computed from debris-flow occurrence and non-occurrence scenarios illustrates that the sediment yield from debris-flow occurrence condition was found to be about 14.2 times of that from debris-flow non-occurrence condition and this implies that the sediment-related hazard in debris-flow potential watershed induced by debris flow may cause severe consequences and damages.
In this study, in addition to the development of numerical analysis techniques above, several practical applications of the analysis techniques in debris flow disaster such as the delineation of hazard zone, damage assessment, effectiveness assessment of engineering remediation, and estimation of sediment yields in debris-flow potential watersheds were also implemented.
Conclusively, the proposed analysis techniques can provide the relevant public agencies or private sectors with the necessary information to draft the prevention/secure emergency plans of debris flow and disaster management policies such as the allocation of rescue resource and the evacuation path during debris flows. Finally, a protective network against sediment-related disaster can be erected to secure the safety of community in the future.目錄
摘要 iv
Abstract vi
目錄 ix
圖目錄 xii
表目錄 xvi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 研究範圍 5
第二章 文獻回顧 6
2.1 歷年重大土砂災害事件 6
2.2 集水區土砂生產量推估模式 9
2.2.1 土壤沖蝕量 9
2.2.2 坡面崩塌量 16
2.2.3 崩塌土砂運移距離推估與崩塌土砂運移率推估模式 21
2.2.4 土砂生產量數值模式 24
2.3 土石流模擬技術 26
2.4 土石流影響範圍及災損評估 27
2.4.1 土石流影響範圍 27
2.4.2 災損評估 29
第三章 集水區土砂生產量推估模式之建立 34
3.1 集水區土砂生產量推估模式之流程架構 34
3.2 集水區土砂生產量推估模式之執行 35
3.2.1 土壤沖蝕量模式 36
3.2.2 坡面崩塌量模式 51
3.2.3 集水區土砂生產量推估 59
3.3 模式率定與驗證 61
3.3.1 TRIGRS模式率定與驗證 61
3.3.2 WINHSPF模式率定與驗證 77
第四章 土石流模擬技術之建立 100
4.1 土石流模擬理論背景 100
4.1.1 控制方程式 100
4.1.2 流變模式 102
4.1.3 各分析模式所需參數與輸入方法 103
4.1.4 土石流模擬分析步驟 105
4.2 模式參數介紹與參數敏感度分析 106
4.2.1 模式參數之介紹 106
4.2.2 模式參數之敏感度分析 112
4.3 土石流模式參數率定及參數選用 120
第五章 土石流影響範圍劃定 129
5.1 土石流模式參數之設定 129
5.2 土石流潛勢溪流影響範圍模擬流程 132
5.3 風險圖製作方法 133
第六章 結果與討論 136
6.1 不同料源土砂生產量之探討 136
6.2 土石流模擬及工程效益評估 139
6.2.1 土石流模擬 139
6.2.2 工程治理效益評估 142
6.3 土石流影響範圍劃定 144
第七章 結論與建議 158
7.1 結論 158
7.2 建議 159
參考文獻 161
圖目錄
圖1.1 研究架構流程圖 4
圖1.2 研究範圍及土石流潛勢溪流分布圖 5
圖2.1 台灣歷年重大颱風豪雨災情 6
圖2.2 台灣歷年(1990~2009年)重大土砂災害空間分布圖 7
圖2.3 土壤沖蝕之主導機制與坡度關係示意圖(摘自吳嘉俊, 2011) 11
圖2.4 打荻氏預測公式說明圖 18
圖2.5 TRIGRS降雨入滲邊坡穩定分析示意圖 20
圖2.6 崩塌高程差及崩塌土砂運移距離之比值與崩塌量體之關係 22
圖2.7 崩塌高程差及崩塌土砂運移距離之比值與崩塌量體之關係 24
圖3.1 土石流潛勢溪流集水區土砂生產之概念性分析流程架構 35
圖3.2 PWATER模組之演算流程架構 39
圖3.3 SEDMNT模組之演算流程架構 45
圖3.4 HYDR模組之演算流程架構 48
圖3.5 SEDTRN模組之演算流程架構 49
圖3.6 BASINS程式執行畫面(以萬里溪集水區為例) 51
圖3.7 WINHSPF程式執行畫面(以萬里溪集水區為例) 51
圖3.8 TRIGRS應用之三維坐標系統 53
圖3.9 TRIGRS應用之二維坐標系統 53
圖3.10 計算孔隙水壓時之下邊界定義方式(a)無限深度;(b)有限深度 54
圖3.11 集水區土砂生產量分析流程圖 60
圖3.12 秀林地區20 m×20 m數值高程資料 62
圖3.13 秀林地區20 m×20 m坡度計算結果 62
圖3.14 秀林地區土壤厚度分布情形 64
圖3.15 初始地下水水位深度圖層 65
圖3.16 秀林地區地質分區 66
圖3.17 敏督利颱風期間水源雨量站降雨強度之時間分布 68
圖3.18 秀林地區徐昇氏雨量站控制範圍(敏督利颱風採用之雨量站) 68
圖3.19 秀林地區降雨強度空間分布圖(敏督利颱風2004/07/03 10:00) 69
圖3.20 秀林地區新增崩塌地目錄之分布 70
圖3.21 秀林地區敏督利颱風事件各地質分區之崩塌率 70
圖3.22 TRIGRS模式參數率定流程圖 72
圖3.23 秀林地區敏督利颱風之率定成果(T=0 hr) 73
圖3.24 秀林地區敏督利颱風之率定成果(T=96 hr) 74
圖3.25 秀林地區鳳凰颱風之驗證成果 76
圖3.26 秀林鄉境內集水區及觀測站分布圖 78
圖3.27 綠水站及仁壽橋集水區之子集水區及河系分布 78
圖3.28 綠水水文觀測站之流量與輸砂量之指數迴歸關係圖 80
圖3.29 仁壽橋水文觀測站之流量與輸砂量之指數迴歸關係圖 80
圖3.30 綠水集水區1997年安珀颱風事件流量模擬率定 83
圖3.31 綠水集水區2000年碧利斯颱風事件流量模擬率定 84
圖3.32 仁壽橋集水區2004年南瑪都颱風事件流量模擬率定 86
圖3.33 仁壽橋集水區2005年龍王颱風事件流量模擬率定 86
圖3.34 綠水集水區1997年安珀颱風事件輸砂量模擬率定 90
圖3.35 綠水集水區2000年碧利斯颱風事件輸砂量模擬率定 90
圖3.36 仁壽橋集水區2004年南瑪都颱風事件輸砂量模擬率定 92
圖3.37 仁壽橋集水區2005年龍王颱風事件輸砂量模擬率定 92
圖3.38 綠水集水區2008年鳳凰颱風事件流量模擬驗證 94
圖3.39 綠水集水區2008年鳳凰颱風事件輸砂量模擬驗證 95
圖3.40 仁壽橋集水區2007年聖帕颱風事件流量模擬驗證 97
圖3.41 仁壽橋集水區2007年聖帕颱風事件輸砂量模擬驗證 97
圖4.1 FLO-2D坐標系統定義 100
圖4.2 土石流分析模擬流程圖 106
圖4.3 曼寧係數對流量歷線之影響 113
圖4.4 入滲條件的加入對流量歷線之影響 114
圖4.5 可能影響範圍距離及面積示意圖 115
圖4.6 改變土石比重對模擬結果之影響 116
圖4.7 降伏應力的改變對模擬結果之影響 117
圖4.8 黏滯係數的改變對模擬結果之影響 118
圖4.9 層流阻滯係數的改變對模擬結果之影響 119
圖4.10 花縣DF118(光復鄉大興村)地形圖 121
圖4.11 大興(花縣DF118)航照判釋與FLO-2D模擬土石影響範圍圖 122
圖4.12 花縣DF037(萬榮鄉見晴村)地形圖 123
圖4.13 見晴(花縣DF037)航照判釋與FLO-2D模擬土石影響範圍圖 124
圖4.14 花縣DF127(鳳林鎮鳳義里)地形圖 125
圖4.15 鳳義(花縣DF127)航照判釋與FLO-2D模擬土石影響範圍圖 126
圖5.1 土砂影響範圍劃定分析流程圖 133
圖5.2 土石流潛勢溪流影響範圍風險圖製作流程圖 135
圖6.1 100年重現期雨量條件下,不同土砂來源之土砂生產量分布圖 137
圖6.2 100年重現期雨量條件下,泥砂遞移率與集水區面積之關係 138
圖6.3 集水區土砂生產量與面積之關係 139
圖6.4 鳳凰颱風後花縣DF111土石流影響範圍之比較 140
圖6.5 鳳凰颱風後花縣DF138土石流影響範圍之比較 142
圖6.6 整治設施施作前模擬之影響範圍 143
圖6.7 整治設施配置示意圖 144
圖6.8 整治設施施作後模擬之影響範圍 144
圖6.9 花縣DF011土石流潛勢溪流影響範圍 148
圖6.10 花縣DF011風險圖 148
圖6.11 花縣DF006土石流潛勢溪流影響範圍 150
圖6.12 花縣DF006風險圖 150
圖6.13 花縣DF015土石流潛勢溪流影響範圍 152
圖6.14 花縣DF015風險圖 152
圖6.15 花縣DF016土石流潛勢溪流影響範圍 153
圖6.16 花縣DF016風險圖 154
圖6.17 花縣DF019土石流潛勢溪流影響範圍 155
圖6.18 花縣DF019風險圖 155
圖6.19 花縣DF021土石流潛勢溪流影響範圍 156
圖6.20 花縣DF021風險圖 157
表目錄
表2.1 各類型坡度因子公式(摘自吳嘉俊, 2011) 11
表2.2 經驗公式法之比較 12
表2.3 現地試驗法之比較 13
表2.4 土壤沖蝕模式之比較 15
表2.5 土石流模擬相關文獻之整理 27
表3.1 PWATER模組輸入參數 38
表3.2 SEDMNT模組輸入參數 44
表3.3 HYDR模組輸入參數 47
表3.4 SEDTRN模組輸入參數 49
表3.5 坡度與土壤厚度比較 63
表3.6 秀林地區TRIGRS模式參數之設定值範圍 67
表3.7 秀林地區正確率之評估準則表 71
表3.8 敏督利颱風之正確率評估結果 74
表3.9 秀林地區TRIGRS模式各地質分區崩塌網格參數率定成果 75
表3.10 秀林地區TRIGRS模式各地質分區未崩塌網格參數率定成果 75
表3.11 鳳凰颱風之正確率驗證結果 77
表3.12 研究範圍內徐昇氏雨量權重百分比 79
表3.13 綠水集水區內所選用之率定颱風事件基本資料表 81
表3.14 仁壽橋集水區內所選用之率定颱風事件基本資料表 81
表3.15 WINHSPF水文模組高敏感度參數說明表 82
表3.16 綠水集水區各颱風事件之降雨逕流參數率定誤差 84
表3.17 綠水集水區率定後之降雨逕流參數 84
表3.18 仁壽橋集水區站各颱風事件之降雨逕流參數率定誤差 87
表3.19 仁壽橋集水區率定後之降雨逕流參數 87
表3.20 WINHSPF泥砂模組高敏感度參數說明表 89
表3.21 綠水集水區各颱風事件之土砂參數率定誤差 91
表3.22 綠水集水區率定後之土砂參數 91
表3.23 仁壽橋集水區各颱風事件之土砂參數率定誤差 93
表3.24 仁壽橋集水區率定後之土砂參數表 93
表3.25 本研究使用之驗證颱風事件基本資料表 94
表3.26 綠水集水區驗證差異 94
表3.27 綠水集水區驗證之降雨逕流參數表 95
表3.28 綠水集水區驗證之土砂參數表 96
表3.29 仁壽橋集水區驗證差異 98
表3.30 仁壽橋集水區驗證之水文參數表 98
表3.31 仁壽橋集水區驗證之土砂參數表 99
表4.1 各分析模式所需之輸入檔及資料 104
表4.2 曼寧係數估計值(摘自FLO-2D使用手冊) 108
表4.3 入滲條件參數估計值(摘自FLO-2D使用手冊) 109
表4.4 土石流體積濃度估計值(摘自FLO-2D使用手冊) 110
表4.5 層流阻滯係數估計值(Woolhiser , 1975) 112
表4.6 土石比重相關參數設定 115
表4.7 降伏應力相關參數設定 117
表4.8 黏滯係數相關參數設定 118
表4.9 層流阻滯係數相關參數設定 119
表4.10 航照判釋與FLO-2D模擬影響面積比較表 122
表4.11 花縣DF118土石流潛勢溪流模擬參數表 122
表4.12 航照判釋與FLO-2D模擬影響面積比較表 124
表4.13 花縣DF037土石流潛勢溪流模擬參數表 125
表4.14 航照判釋與FLO-2D模擬影響面積比較表 126
表4.15 花縣DF127土石流潛勢溪流模擬參數表 127
表4.16 案例之降伏應力歸納 127
表4.17 降伏應力決定表 127
表5.1 土石流體積濃度之相關研究 131
表5.2 災害危害度及定義 134
表5.3 風險等級評估各因子之類型及評分表(Saldivar-Sali & Einstein,2007) 135
表6.1 土砂生產量與集水區面積之迴歸分析 138
表6.2 花縣DF111土石流影響範圍最長距離與最寬距離之量化值 141
表6.3 花縣DF138土石流影響範圍最長距離與最寬距離之量化值 142
表6.4 秀林地區土石流潛勢溪流模擬之最大平均流動深度結果 145
表6.5 秀林地區土石流潛勢溪流模擬之最大影響範圍結果 14
長期施用磷肥對土壤性質之效應
本文之目的主要係探討長期施用對土壤性質之影響。以彰化二林溪湖糖廠之粘板岩老
沖積上為試驗材料,採取不施磷肥及施磷肥200kg/haP0之土樣,測定其理化
性質。所得的結果如下:
一、長期施用磷肥P0200kg/ha較不施磷肥作物之平均增產幅度為79%。
二、土壤含有Mica ,Chlorite 等之粘土礦物。Mica,Chlorite屬永久電荷膠體。
三、在土壤表面淨電荷測定中發表面淨電荷為正,可能是因吸附多量的鈣鎂離子,導
致Charge reet ersal 。
四、以電位滴定曲線測定土壤零電荷點,可知長期施用磷肥之零電荷點未施磷者低,
促使表面正電荷降低。
五、由磷素吸附曲線可明瞭未施磷肥者,其吸收磷素能力較長期施用磷肥者強,反之
,長期施用磷肥者,其磷素供應能較未施者強。
六、長期施用磷肥可使土壤有效性磷含量提高。長期不施磷肥而種植作物,均可導致
土壤有效性磷含量之降低。
七、長期施用磷肥者較未施用磷肥者,可提高陽離子交換能量。
八、用多重濕篩法測定土壤團粒穩定性,結果顯示長期施磷具有提高團粒平均徑,穩
定土壤構造之效應
Effect of Long-term Application of Phosphate Fertilizers on Phosphrous Fixation and Supplying Power and Related Properties
中苗農村再生社區農村建設設施體檢之評估
本研究蒐集民國90年至103年,中苗地區88個農再社區中,以往災害通報較頻繁之農村建設設施,作為辦理體檢評估之對象;除了運用GIS掌握農村建設設施之分布情形之外,並進行現場之檢視與調查,後續並依其體檢成果資料,進行損壞項目、原因及損壞情形之探討分析,藉以建立各類設施物後續維護管理之機制,以有效提升設施物之使用年限。
根據調查結果,在295件農村建設設施中,經實地檢視設施物受損程度,其中設施狀況良好,功能健全者,約有51%;而輕微或局部受損,功能尚可維持或有減損者,約有41%;至於設施嚴重損毀,影響原功能者,僅約8%。再依受損程度經評估後,無需修復者,約51%;需修復但無急迫性者,約32%;優先修復及拆除者,約17%。
在受損設施物中,木作設施之受損率最高,約64%;混凝土次之,約15%;石材再次之,約10%;而金屬、塑膠及植栽,約8%;其他材料,約3%。本研究中再針對各項材料損壞原因,進行分析與探討,且針對受損率最高之木作材料致損原因深入之分析與探討,提出加強選材及防腐、異質結合或替代材料及定期維護等改善策略,以提升木作設施之品質與耐久性,並提供後續農村建設設施之參考。In this research, it is focused on the collection of information between the period of 2001 and 2014, especially for the 88 rural rejuvenation communities in Taichung and Miaoli area. And the objects of investigation and estimation processes are those rural constructions facilities frequently reported in disaster bulletins. Thereby not only GIS is applied so as to control the distribution of rural constructions facilities but also onsite inspection and survey are proceeded as well, entailing with explorative analyses for damaged items, causes of damage and damaged scenarios according to the findings from inspections so as to establish follow-up maintenance and management mechanism for all facilities in order to effectively lengthen the service life of these structures.
According to the survey finding, within the 295 pieces of rural constructions facilities, and right after the onsite inspection is completed for the structure damage level, therefore this research finds that there are approximately 51% rated as in good condition, 41% with minor or partial damages whereas the functionalities are maintained or diminished somewhat. As for facilities severely damaged which would impact the functionalities are only 8%. In these, 51% are rated as no need for restoration after assessments made on the level of damage. And 32% require restoration nonetheless not urgent and only 17% are rated as prioritized restoration as well as dismantling.
Within the damaged facilities, wood facilities suffers the most which is about 64%, followed by concrete facilities at approximately 15%, and 10% is of stone facilities, about 8% in metal facilities, plastics facilities and vegetation facilities, the remaining is of 3%. In this research, we target to the causes for all material damages and proceed to analyses and explorations as well. In addition, in-depth analyses and explorations are conducted and followed with proposals for enhancement strategies in aspects like strengthening the material selection and anti-corrosion, heterogeneous binding or substitute material so as to raise the level of quality and durability for wood facilities in addition to serve as reference for subsequent rural constructions facilities
十三寮排水系統滯洪池原始規劃與細部設計之差異分析
十三寮排水系統位於臺中市大雅區境內,於月祥路以西上游區段,因通洪斷面不足,且既有排水無法負荷區域外增加的逕流量,造成水流宣洩不及,因此於排水系統上游處設置滯洪池,以降低洪峰流量,減輕下游區域排水路之排水負荷。本研究蒐集十三寮排水系統滯洪池規劃設計之原始資料、及經細部設計後之滯洪池規劃設計資料,分析驗證滯洪池之功能,探討經細部設計滯洪池後,其功能性是否符合原始規劃需求。研究結果顯示,引用原始規劃10年洪水量計算分析,細部設計滯洪池降低洪峰流量及放流量,與原始規劃需求相同,且本區滯洪池細部設計,經採用原規劃洪水量做為滯洪池入流量進行演算,可滿足原規劃滯洪需求,因此本滯洪池細部設計功能性符合原始規劃之需求。The Shih-San-Liao drainage system is located at Daya District in Taichung. Due to the lacked of the flood capacity on the west side of Yueh Shiang road, the water was hard to discharge. Therefore, the detention pond was built on the upstream of the drainage system to decrease the flood peak discharge and reduce the load of the drainage on the downstream. This study collects the data of the original plan and detail design of detention pond for Shih-San-Liao drainage system, and analysis the capacity of the detention pond. After this, discuss the variances between the original plan and the detail design of detention pond. The results show that the original plan and detail design of detention pond are identical in 10-year return periods of the hydrological routing. The flood peak discharge in detail design of detention pond can fit in with the demand for the original plan. Hence, the function of the detail design can fit that of the original plan for the detention pond
Analysis and Assesment of Wooden Retaining Structure Durability and Stability
大雪山林道47K+100 木構造擋土牆為國內第一座以疏伐材及現地土石料共構之大型木構造擋土牆,該路段為大雪山林道通往小雪山莊及大雪山神木主要通道並兼負聯外交通重任。林道管理維護採傳統工法施作有其優劣,本研究探討傳統工法與生態工法在林道改善優劣處。現存林道及其附屬設施如擋土工、排水工等多為傳統工法所構築,在維護管理時,常因地處偏遠營建物資不易運達,造成施工品質不良,因傳統工法無法與周邊森林環境自然融入等問題。疏伐木為常運用於生態工法之木質材料,但疏伐木有材料強度較弱及易腐蝕劣化等不利因素,將使以疏伐木構築之構造物長期耐久性及穩定性逐漸下降而至破壞。本研究將針對疏伐木擋土構造物工程實例,藉由現地監測及數值分析方式進行木構造擋土牆穩定性評估,建立對木構造擋土牆長期穩定性評估方式及後續管理維護之參考。The wooden retaining structure situates at 47K+100 downslope of Da-syue-shan Forest Road is Taiwan’s first large-scale retaining wall which constructed by thinned wood and field material such as soil and rock. The road section was the main access and passage bound for Siao-syue-shan Visitor Center and Da-syue-shan sacred tree. This study evaluates the efficiency of wooden retaining structure and investigates the merit and demerit of conventional and ecological engineering methods in remediation of forest road. For the existing forest road, most of the auxiliary facilities such as retaining wall and drainage system were constructed by conventional engineering method management and maintenance. It is difficult to deliver construction material due to long distance in mountainous area. Eventually, caused bad quality. The wooden structures used by conventional engineering method reveals combined difficulties with natural forest environment. Thinned wood was commonly used as a construction material in ecological engineering method. However, due to the low strength and liable to deterioration, the long term durability and stability of wooden material tend to descend with elapsed time and eventually to failure. In Taiwan, it is very rare in research on the durability and stability of wooden structures. This study evaluates the durability and stability of wooden structure in field site using deterioration detection techniques, in-situ monitoring and numerical analyses. Finally, an evaluation method and sequential maintenance, management method were raised for practical usage in long term stability of wooden retaining structures
