435,431 research outputs found

    Partially Penalized Immersed Finite Element Methods for Elliptic Interface Problems

    Full text link
    This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the added penalty, not only these IFE methods can be proven to have the optimal convergence rate in the H1-norm provided that the exact solution has sufficient regularity, but also numerical results indicate that their convergence rates in both the H1-norm and the L2-norm do not deteriorate when the mesh becomes finer which is a shortcoming of the classic IFE methods in some situations. Trace inequalities are established for both linear and bilinear IFE functions that are not only critical for the error analysis of these new IFE methods, but also are of a great potential to be useful in error analysis for other IFE methods

    Completing Low-Rank Matrices with Corrupted Samples from Few Coefficients in General Basis

    Full text link
    Subspace recovery from corrupted and missing data is crucial for various applications in signal processing and information theory. To complete missing values and detect column corruptions, existing robust Matrix Completion (MC) methods mostly concentrate on recovering a low-rank matrix from few corrupted coefficients w.r.t. standard basis, which, however, does not apply to more general basis, e.g., Fourier basis. In this paper, we prove that the range space of an m×nm\times n matrix with rank rr can be exactly recovered from few coefficients w.r.t. general basis, though rr and the number of corrupted samples are both as high as O(min{m,n}/log3(m+n))O(\min\{m,n\}/\log^3 (m+n)). Our model covers previous ones as special cases, and robust MC can recover the intrinsic matrix with a higher rank. Moreover, we suggest a universal choice of the regularization parameter, which is λ=1/logn\lambda=1/\sqrt{\log n}. By our 2,1\ell_{2,1} filtering algorithm, which has theoretical guarantees, we can further reduce the computational cost of our model. As an application, we also find that the solutions to extended robust Low-Rank Representation and to our extended robust MC are mutually expressible, so both our theory and algorithm can be applied to the subspace clustering problem with missing values under certain conditions. Experiments verify our theories.Comment: To appear in IEEE Transactions on Information Theor
    corecore