9,333 research outputs found

    Local implementation of nonlocal operations of block forms

    Full text link
    We investigate the local implementation of nonlocal operations with the block matrix form, and propose a protocol for any diagonal or offdiagonal block operation. This method can be directly generalized to the two-party multiqubit case and the multiparty case. Especially, in the multiparty cases, any diagonal block operation can be locally implemented using the same resources as the multiparty control-U operation discussed in Ref. [Eisert et al., Phys. Rev. A 62, 052317(2000)]. Although in the bipartite case, this kind of operations can be transformed to control-U operation using local operations, these transformations are impossible in the multiparty cases. We also compare the local implementation of nonlocal block operations with the remote implementation of local operations, and point out a relation between them.Comment: 7 pages, 3 figure

    Multi-particle and High-dimension Controlled Order Rearrangement Encryption Protocols

    Get PDF
    Based on the controlled order rearrange encryption (CORE) for quantum key distribution using EPR pairs[Fu.G.Deng and G.L.Long Phys.Rev.A68 (2003) 042315], we propose the generalized controlled order rearrangement encryption (GCORE) protocols of NN qubits and NN qutrits, concretely display them in the cases using 3-qubit, 2-qutrit maximally entangled basis states. We further indicate that our protocols will become safer with the increase of number of particles and dimensions. Moreover, we carry out the security analysis using quantum covariant cloning machine for the protocol using qutrits. Although the applications of the generalized scheme need to be further studied, the GCORE has many distinct features such as great capacity and high efficiency
    corecore