108 research outputs found

    Brownian Dynamics Simulation of the Influence of Hydrodynamic Interaction on Particle Coagulation

    Get PDF
    采用布朗动力学模拟方法,研究了流体动力学作用对稀溶液中悬浮粒子聚集过程的影响.模拟中忽略了一个粒子同时与多个粒子碰撞聚集的可能,引入了前人有关两粒子间流体动力学作用影响的研究成果.模拟结果证实了流体动力学的作用在比较大的幅度上减缓了粒子的聚集过程,是导致粒子聚集速率的实验值低于Smoluchowski理论值的重要原因之一.另外,在分别加入和排除重力作用,以及考虑和忽略粒子间流体动力学作用在内的各种条件下模拟了粒子的聚集过程,得到了两种因素相互耦合作用时各因素对粒子聚集过程影响的结果,并从动力学的角度对这些因素的影响机制进行了相应的讨论

    国内高速列车气动噪声研究进展概述

    Get PDF
    随着运行速度的提升,气动噪声逐渐成为高速列车最主要的噪声源,并极有可能成为新设计高速列车的一个技术瓶颈。开展高速列车气动噪声研究,明晰高速列车气动噪声机理与规律,发展低噪声高速列车外形设计对更高速度级的高速列车研发具有重要意义。本文主要对自2010年以来国内进行的高速列车气动噪声研究进行梳理总结。首先详细介绍了高速列车气动噪声研究采用的一系列方法,主要从实车试验、风洞实验以及数值模拟方法三个方面展开。在掌握高速列车气动噪声研究方法的基础上,进而探讨了当前高速列车气动噪声研究的现状,重点就高速列车气动噪声源识别、主要噪声源机理与特性、噪声源优化等方向进行了阐述,并明确了当前研究获得的一些主要结论。最后简要探讨了高速列车气动噪声未来可能的研究方向

    典型路基结构对高速列车横风气动特性影响分析

    Get PDF
    由于地域及环境的限制, 高速铁路采用多种路基结构如平直地面、不同高度路堤、高架桥等,当列车运行在路堤及高架桥上时,车体周围的绕流流场比平直地面更加复杂。在强横风的作用下,不同的路基结构上的高速列车横风气动特性存在明显差异,不合理的路基结构将影响列车的横风安全性。同时列车结构复杂,转向架、受电弓等都对列车的流场特性有重要作用,过于简化的短编组列车外形不能够精细反映列车的真实气动特性。为研究典型路基结构对高速列车横风气动特性的影响,以9编组动力集中型高速列车实车为研究对象,考虑风挡、转向架、受电弓等细节特征,对列车运行速度为200 km/h,横风速度分别为20 m/s、30 m/s、35 m/s、40 m/s,路基结构分别为平直地面、3 m路堤、6 m路堤、高架桥等四种场景下的高速列车空气动力学性能进行了仿真计算和对比,分析了不同路基地面条件下列车的横风气动特性的差异及规律,为横风条件下复杂路基结构的列车运行安全控制提供了参考

    Parametric design and optimization of high speed train nose

    Get PDF
    Aiming at shortening the design period and improve the design efficiency of the nose shape of high speed trains, a parametric shape optimization method is developed for the design of the nose shape has been proposed in the present paper based on the VMF parametric approach, NURBS curves and discrete control point method. 33 design variables have been utilized to control the nose shape, and totally different shapes could be obtained by varying the values of design variables. Based on the above parametric method, multi-objective particle swarm algorithm, CFD numerical simulation and supported vector machine regression model, multi-objective aerodynamic shape optimization has been performed. Results reveal that the parametric shape design method proposed here could precisely describe the three-dimensional nose shape of high speed trains and could be applied to the concept design and optimization of the nose shape. Besides, the SVM regression model based the multi-points criterion could accurately describe the non-linear relationship between the design variables and objectives, and could be generally utilized in other fields. No matter the simplified model or the real model, the aerodynamic performance of the model after optimization has been greatly improved. Based on the SVR model, the nonlinear relation between the aerodynamic drag and the design variables is obtained, which could provide guidance for the engineering design and optimization

    Parametric design and optimization of high speed train nose

    Get PDF
    Aiming at shortening the design period and improve the design efficiency of the nose shape of high speed trains, a parametric shape optimization method is developed for the design of the nose shape has been proposed in the present paper based on the VMF parametric approach, NURBS curves and discrete control point method. 33 design variables have been utilized to control the nose shape, and totally different shapes could be obtained by varying the values of design variables. Based on the above parametric method, multi-objective particle swarm algorithm, CFD numerical simulation and supported vector machine regression model, multi-objective aerodynamic shape optimization has been performed. Results reveal that the parametric shape design method proposed here could precisely describe the three-dimensional nose shape of high speed trains and could be applied to the concept design and optimization of the nose shape. Besides, the SVM regression model based the multi-points criterion could accurately describe the non-linear relationship between the design variables and objectives, and could be generally utilized in other fields. No matter the simplified model or the real model, the aerodynamic performance of the model after optimization has been greatly improved. Based on the SVR model, the nonlinear relation between the aerodynamic drag and the design variables is obtained, which could provide guidance for the engineering design and optimization

    Influences of affiliated components and train length on the train wind

    Get PDF
    The induced airflow from passing trains, which is recognized as train wind, usually has adverse impacts on people in the surroundings, i.e., the aerodynamic forces generated by a high-speed train&#39;s wind may act on the human body and endanger the safety of pedestrians or roadside workers. In this paper, an improved delayed detached eddy simulation (IDDES) method is used to study train wind. The effects of the affiliated components and train length on train wind are analyzed. The results indicate that the affiliated components and train length have no effect on train wind in the area in front of the leading nose. In the downstream and wake regions, the longitudinal train wind becomes stronger as the length of the train increases, while the transverse train wind is not affected. The presence of affiliated components strengthens the train wind in the near field of the train because of strong flow solid interactions but has limited effects on train wind in the far field.</span

    Drag reduction using riblets downstream of a high Reynolds number inclined forward step flow

    Get PDF
    Micro-riblet is an efficient passive method for controlling turbulent boundary layers, with the potential to reduce frictional drag. In various applications within the transportation industry, flow separation is a prevalent flow phenomenon. However, the precise drag reduction performance of riblets in the presence of flow separation remains unclear. To address this, an inclined forward step model is proposed to investigate the interaction between riblet and upstream flow separation. The large eddy simulation (LES) method is applied to simulate the flow over geometries with different step angles and riblet positions. The results show riblets still reduce wall frictional resistance when subjected to the upstream flow separation. Remarkably, as the angle of the step increases from 0 degrees to 30 degrees, the drag reduction experiences an increment from 9.5% to 12.6%. From a turbulence statistics standpoint, riblets act to suppress the Reynold stress in the near-wall region and dampen ejection motions, thus weakening momentum exchange. Quadrant analysis reveals that with the augmentation of flow separation, the Q2 motion within the flow field intensifies, subsequently enhancing the riblet-induced drag reduction. Moreover, the position of the rib lets has a significant impact on the pressure drag. Riblets close to the point of separation enhance flow separation, altering the surface pressure distribution and thus increasing the resistance. The results reveal that when the riblets are positioned approximately 160 riblet heights away from the step, their effect on the upstream flow separation becomes negligible. The precise performance of riblets under complex flow conditions is important for their practical engineering application

    The catalytic esterification properties of PVA membranes filled with ironic sulfate

    Get PDF
    [中文文摘]通过在PVA膜中掺杂硫酸铁制得兼备催化和分离功能的酯化膜反应器 ,并用IR、DSC及SEM等测试方法分析了膜的形态结构及组成。实验结果表明 :硫酸铁的加入对膜的渗透性能和酯化反应的选择性及转化率的提高有重要作用 ;对于乙酸 /乙醇酯化反应体系 ,适宜的填充量为 2 0 %~ 30 % (质量比 )。[英文文摘]The membranes with both catalytic and separative properties were made by using the hydrophilic alcohol (PVA) filled Lewis acid Ironic sulfate. The chemical composition , physical structure and morphology were studied by a variety of techniques , including infrared spectrometry( IR) , differential scanning calorimeter (DSC) and scanning electron microscopy (SEM) etc. The experimental results showed that the addition of Fe3 (SO4) 2 was inportant to improve the flux of the membrane flux and the yield and selection of the esterification reac2tion , and the appropriate cotent of Fe3 (SO4) 2 for the alcohol/ acid esterification was 20 %~30 %(w/ w) .福建省自然科学基金 (C991 0 0 0 3) ;教育部骨干教师基金;教育部重点科技项目;教育部留学回国人员启动费资助

    PARAMETRIZATION OF HIGH-SPEED TRAIN STREAMLINE SHAPE

    Get PDF
    In the past decade, the high speed trains (HSTs) in China have experienced a booming development, with the design of CRH380A as a predominant example. A series of brand new HSTs have been developed with high aerodynamic performance, which includes the running resistance, the lift of the trailing car, pressure waves when trains pass by each other, aerodynamic noise in the far field, etc. In order to design HSTs with better aerodynamic performance, it is necessary to perform aerodynamic shape optimization, especially to optimize the streamline shape of HSTs. Parametrization is the basis for the whole optimization process, since good parametrization approach not only affects the optimization strategy, but also determines the design space and optimization efficiency. In the present paper, a series of work related to the streamline shape parametrization performed by the author in recent years have been introduced. Four different parametrization approaches have been exhibited, which are Local Shape Function method (LSF) and Free-Foam Deformation method (FFD), Modified Vehicle Modeling Function method (MVMF), Class function/Shape function Transformation method (CST). These methods could be categorized into two kinds: shape disturbance approach (LSF and FFD) and shape description approach (MVMF and CST). Among these four methods, some are developed by the authors while some are locally modified so as to meet the parametrization of the streamline shape. The detailed process of these four approaches are exhibited in the present paper and the characteristics of these four approaches are compared.</p

    膜技术处理赖氨酸生产废水的研究

    Get PDF
    为了确定赖氨酸生产废水经过膜技术处理后废水中的CODcr值的大小 ,我们采用超滤与纳滤相结合的工艺分别对浓废水和稀废水进行中试实验。实验结果表明 :采用超滤 -一级纳滤 -二级纳滤工艺流程处理浓废水 ,终端废水的CODcr值降低到 489mg/L ;采用超滤 -纳滤流程处理稀废水 ,最终透析液的CODcr值可以降低到 5 0 2mg/L。大大减轻了后续生化处理的负荷
    corecore