1 research outputs found

    [[alternative]]Development and thermal performance of reverse thermosyphon loop

    No full text
    碩士[[abstract]]本研究主要目的為不使用任何閥件下,開發一即可自行向下傳熱之迴路,實驗裝置使用外徑6 mm,厚度2 mm之不鏽鋼管作為冷凝蓄壓槽與管路之材料,蒸發器與熱交換器則使用銅管製作,工作流體為充填率固定85 %之去離子水,加熱功率為30 W、50 W與70 W,並分別使用五種冷卻水溫(15 °C, 20 °C, 25 °C, 30 °C, 35 °C)。實驗改變兩種不同的蓄壓槽入口端高度與冷卻水溫度,探討在不同加熱功率下迴路之熱傳性能。 當蓄壓槽入口端高度較低時,槽內無足夠的空間給予蓄壓,導致流體回流致使迴路無法作動。則入口端高度較高時,蒸發端所產生之蒸汽可有效地傳至蓄壓槽內蓄壓,當蒸汽壓力足夠後,則可藉由壓力與重力作用使得管內液體回流至蒸發器,使迴路達成向下傳熱與循環作動。此外,當冷卻水溫度為25 °C與20 °C時,迴路有較佳的循環作動,加熱功率為70 W與冷卻水溫為30 °C時,可得迴路之最低熱阻為0.31 °C/W。[[abstract]]The main objective of this research was to develop a valve-less self-acting reverse thermosyphon loops (RTL) that transmits heat downwards with a modified inlet height of condenser reservoir. The condenser reservoir and vessels of this experiment were made of stainless steel with outer diameter and thickness of 6 mm and 2 mm respectively while the evaporator and heat exchanger were made of copper. The working fluid used was distilled water with a fixed filling ratio of 85%. Various heat inputs (30W, 50W, 70W) and temperatures of cooling water (15°C, 20°C, 25°C, 30°C, 35°C) were used. The loop heat transfer performance was determined by using various heat inputs and cooling water temperatures. When the inlet height of condenser reservoir was lower, the cyclical motion can’t take place as the accumulated pressure in the condenser reservoir is too low for putting working fluid into motion. However, when the inlet height of condenser reservoir is higher, the vapor from evaporator can be transmitted efficiently to the condenser reservoir. Thus, the fluid inside the vessels can flow back into evaporator with the assistance of pressure difference and gravitational force as the accumulated pressure was higher and sufficient. Hence, a downward heat transfer and cyclical motion can be achieved in the loop. Besides, a better cyclical motion was obtained when cooling water temperatures were at 25°C and 20°C whereas the lowest resistance which was 0.31°C/W happened at heat input of 70 W and cooling water temperature of 30 °C.[[tableofcontents]]目錄 中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 虹吸式熱管 2 1.2.2 迴路式虹吸熱管 10 1.2.3 逆虹吸迴路式熱管 12 1.3 研究目的 17 第二章 理論基礎 18 2.1 熱管介紹 18 2.1.1 熱管工作流體之選擇 19 2.1.2 熱管作動之條件 19 2.1.3 熱管熱傳限制 20 2.2 虹吸式熱管介紹 22 2.2.1 虹吸式熱管形式 23 2.2.2 虹吸式熱管之優點 24 2.3 逆虹吸迴路介紹 25 2.3.1 體積量測 26 2.3.2 性能評估 26 第三章 實驗設計與條件 27 3.1 影響實驗之變因 28 3.1.1 真空度 28 3.1.2 正負壓測漏 28 3.1.3 熱電偶線的誤差 29 第四章 實驗架設與步驟 30 4.1 逆虹吸迴路之架設 30 4.2 實驗參數及步驟 32 4.3 實驗設備 34 第五章 實驗結果與討論 37 5.1 迴路各點溫度變化(高度較低) 37 5.2 迴路各點溫度變化(高度較高) 38 5.3 熱阻值比較 41 5.3.1 不同冷卻水溫之加熱功率與熱阻關係 41 5.3.2 蓄壓槽入口端高度改變 42 第六章 結論與建議 43 參考文獻 44 附錄一 熱阻分析 47 附錄二 絕熱棉特性表 48 圖目錄 圖1-1 虹吸式熱管實驗架設圖 2 圖1 2 充填R-22與R134a之熱性能 3 圖1 3 充填水之熱性能 3 圖1 4 設備示意圖 4 圖1 5 恆溫槽與蒸發區溫度差異 5 圖1 6 恆溫槽與冷凝區溫差對整體熱傳係數之影響 5 圖1 7 密閉二相虹吸熱管實驗架設圖 6 圖1 8 密閉二相虹吸熱管內的溫度反應變化 7 圖1 9 在蒸發區溫度的變化 7 圖1 10 數值模型與實驗結果之比較 8 圖1 11 密閉二相虹吸式熱管尺寸示意圖 8 圖1 12 熱傳量與平均溫度之比較圖(A.R=7.45) 9 圖1 13 熱傳量與平均溫度之比較圖(A.R=9.8) 9 圖1 14 熱傳量與平均溫度之比較圖(A.R=11.8) 9 圖1 15 二相迴路式虹吸熱管示意圖 10 圖1 16 二相迴路式虹吸熱管效能圖 10 圖1 17 毛細燒結結構示意圖 11 圖1 18 加熱功率100W時不同表面之蒸發熱阻 11 圖1 19 無差壓式迴路之示意圖 12 圖1 20 外加機械泵之傳熱方式 13 圖1 21 自主向下傳熱之方式 14 圖1 22 逆虹吸迴路示意圖 15 圖1 23 長型迴路式傳熱裝置 15 圖1 24 可視化逆流熱虹吸迴路裝置 16 圖1 25 可視化逆流熱虹吸迴路裝置之效益圖 16 圖2 1 圖熱管作動示意圖 18 圖2 2 熱管熱傳限制示意圖 21 圖2 3 飛濺限制物理模型 21 圖2 4 虹吸熱管作動示意圖 22 圖2 5 單管虹吸熱管 23 圖2-6 迴路式平行熱虹吸熱管 23 圖2 7 迴路式虹吸熱管 24 圖2-8 逆虹吸迴路示意圖 25 圖3 1 實驗示意圖 27 圖3 2 水的三相圖 28 圖4 1 實驗運作示意圖 30 圖4 2 實驗架設圖 31 圖4 3 交流電源供應器 34 圖4 4 電加熱棒 35 圖4 5 真空幫浦 35 圖4 6 真空計 35 圖4 7 流量計I 36 圖4 8 流量計II 36 圖4 9 數據擷取器 36 圖4 10 流量顯示器 36 圖4 11 恆溫水槽 36 圖5 1 冷凝水溫35 °C時之溫度數據 37 圖5-2 冷凝水溫20 °C時之迴路溫度與時間數據圖 38 圖5-3 冷凝水溫25 °C時之迴路溫度與時間數據圖 39 圖5-4 冷凝水溫15 °C時之迴路溫度與時間數據圖 39 圖5-5 冷凝水溫30 °C時之迴路溫度與時間關係圖 40 圖5-6 冷凝水溫35 °C時之迴路溫度與時間關係圖 40 圖5 7 不同冷卻水溫之加熱功率與熱阻關係圖 41 圖5 8 改變蓄壓槽入口端高度之不同冷卻水溫與熱阻關係圖 42 表目錄 表4-1實驗參數 32[[note]]學號: 603350090, 學年度: 10
    corecore