50,623 research outputs found

    History of the tether concept and tether missions: a review

    Get PDF
    This paper introduces history of space tethers, including tether concepts and tether missions, and attempts to provide a source of references for historical understanding of space tethers. Several concepts of space tethers since the original concept has been conceived are listed in the literature, as well as a summary of interesting applications, and a research of space tethers is given. With the aim of implementing scientific experiments in aerospace, several space tether missions which have been delivered for aerospace application are introduced in the literature.</jats:p

    Scattering Equations and KLT Orthogonality

    Full text link
    Several recent developments point to the fact that rational maps from n-punctured spheres to the null cone of D dimensional momentum space provide a natural language for describing the scattering of massless particles in D dimensions. In this note we identify and study equations relating the kinematic invariants and the puncture locations, which we call the scattering equations. We provide an inductive algorithm in the number of particles for their solutions and prove a remarkable property which we call KLT Orthogonality. In a nutshell, KLT orthogonality means that "Parke-Taylor" vectors constructed from the solutions to the scattering equations are mutually orthogonal with respect to the Kawai-Lewellen-Tye (KLT) bilinear form. We end with comments on possible connections to gauge theory and gravity amplitudes in any dimension and to the high-energy limit of string theory amplitudes.Comment: 21 page

    Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations

    Full text link
    We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of nn massless particles are given by integrals over the positions of nn points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein--Yang--Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke--Taylor-like factors of subsets of particle labels.Comment: 18 pages. References and a new section on double-trace gluon amplitudes added in v

    A Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark

    Full text link
    Automatic program repair papers tend to repeatedly use the same benchmarks. This poses a threat to the external validity of the findings of the program repair research community. In this paper, we perform an empirical study of automatic repair on a benchmark of bugs called QuixBugs, which has been little studied. In this paper, 1) We report on the characteristics of QuixBugs; 2) We study the effectiveness of 10 program repair tools on it; 3) We apply three patch correctness assessment techniques to comprehensively study the presence of overfitting patches in QuixBugs. Our key results are: 1) 16/40 buggy programs in QuixBugs can be repaired with at least a test suite adequate patch; 2) A total of 338 plausible patches are generated on the QuixBugs by the considered tools, and 53.3% of them are overfitting patches according to our manual assessment; 3) The three automated patch correctness assessment techniques, RGT_Evosuite, RGT_InputSampling and GT_Invariants, achieve an accuracy of 98.2%, 80.8% and 58.3% in overfitting detection, respectively. To our knowledge, this is the largest empirical study of automatic repair on QuixBugs, combining both quantitative and qualitative insights. All our empirical results are publicly available on GitHub in order to facilitate future research on automatic program repair
    corecore