45,883 research outputs found

    Superconducting Vortices induced Periodic Magnetoresistance Oscillations in Single Crystal Au Nanowires

    Full text link
    We show in this paper that it is possible to induce superconducting vortices in a gold nanowire connected to superconducting electrodes. The gold nanowire acquires superconductivity by the proximity effect. The differential magnetoresistance of the nanowire beyond a critical magnetic field shows uniform oscillations with increasing field with a period of \phi0/(2\pir^2) (\phi0 = h/2e is the superconducting flux quantum, r = 35 nm is the radius of the nanowire). We demonstrate that these periodic oscillations are the signatures of the sequential generation and moving of vortices across the gold nanowire

    LHC Signatures of Two-Higgs-Doublets with Fourth Family

    Full text link
    On-going Higgs searches in the light mass window are of vital importance for testing the Higgs mechanism and probing new physics beyond the standard model (SM). The latest ATLAS and CMS searches for the SM Higgs boson at the LHC (7TeV) found some intriguing excesses of events in the \gamma\gamma/VV^* channels (V=Z,W) around the mass-range of 124-126 GeV. We explore a possible explanation of the \gamma\gamma and VV^* signals from the light CP-odd Higgs A^0 or CP-even Higgs h^0 from the general two-Higgs-doublet model with fourth-family fermions. We demonstrate that by including invisible decays of the Higgs boson A^0 or h^0 to fourth-family neutrinos, the predicted \gamma\gamma and VV^* signals can explain the observed new signatures at the LHC, and will be further probed by the forthcoming LHC runs in 2012.Comment: 22pp, 10 Figs, JHEP published version, references adde

    Extending Higgs Inflation with TeV Scale New Physics

    Full text link
    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ2\sigma deviations, and generally gives a negligible tensor-to-scalar ratio r103r \sim 10^{-3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark TT and a real scalar SS. The presence of singlets (T,S)(T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1103)r = O(0.1 - 10^{-3}), consistent with the favored rr values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index ns0.96 n_s \simeq 0.96 . It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark TT and scalar SS at the LHC and future high energy pp colliders.Comment: 20pp, to match JCAP Final Versio
    corecore