27 research outputs found
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
Bounding separable recourse functions with limited distribution information
The recourse function in a stochastic program with recourse can be approximated by separable functions of the original random variables or linear transformations of them. The resulting bound then involves summing simple integrals. These integrals may themselves be difficult to compute or may require more information about the random variables than is available. In this paper, we show that a special class of functions has an easily computable bound that achieves the best upper bound when only first and second moment constraints are available.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44185/1/10479_2005_Article_BF02204821.pd
Safe Approximations of Ambiguous Chance Constraints Using Historical Data
This paper proposes a new way to construct uncertainty sets for robust optimization. Our approach uses the available historical data for the uncertain parameters and is based on goodness-of-fit statistics. It guarantees that the probability the uncertain constraint holds is at least the prescribed value. Compared to existing safe approximation methods for chance constraints, our approach directly uses the historical data information and leads to tighter uncertainty sets and therefore to better objective values. This improvement is significant, especially when the number of uncertain parameters is low. Other advantages of our approach are that it can handle joint chance constraints easily, it can deal with uncertain parameters that are dependent, and it can be extended to nonlinear inequalities. Several numerical examples illustrate the validity of our approach
Robust optimization made easy with ROME
10.1287/opre.1110.0944Operations Research594973-985OPRE