8 research outputs found
Ishrana inulinom kao terapija na hemopreventivne i zapaljenske markere tumorogeneze kolorektalnih kancera
The aim of this experiment was to investigate the infl uence of inulin administration on chemopreventive and inflammatory markers in dimethylhydrazine induced colorectal cancer development in rats. A group of 30 Sprague-Dawley rats was divided into a control group (CG), a group with dimethylhydrazine (DMH), and a group given dimethylhydrazine combined with the prebiotic (DMH+PRE). Dimethylhydrazine injection significantly (p<0.001) elevated the immunoreactivity chemopreventive markers COX-2, NFκB, iNOS, elevated serum and jejunal mucosa levels of proinfl ammatory cytokine IL-2, and decreased serum and jejunal mucosa levels of regulatory cytokine IL-10. Inulin diet intervention significantly suppressed immunoreactivity of COX- 2, NFκB, iNOS positive cells in the tunica mucosae and tela submucosae of rat colon tissue, increased levels of IL-2 and decreased levels of IL-10. By determining the chemopreventive markers COX-2, iNOS and NFkB, which can be characterized as inflammatory markers, we confirmed the presence of inflammation in the colon as the number of COX-2, NFkB and iNOS immunoreactive cells was significantly higher after DMH application than in the control group. These findings indicate that dietary intake of inulin suppressed the expression of the observed markers, which play an important role in carcinogenesis and inflammation, which predispose the use of inulin i
Probiotic-Based Intervention in the Treatment of Ulcerative Colitis: Conventional and New Approaches
Although there are number of available therapies for ulcerative colitis (UC), many patients are unresponsive to these treatments or experience secondary failure during treatment. Thus, the development of new therapies or alternative strategies with minimal side effects is inevitable. Strategies targeting dysbiosis of gut microbiota have been tested in the management of UC due to the unquestionable role of gut microbiota in the etiology of UC. Advanced molecular analyses of gut microbiomes revealed evident dysbiosis in UC patients, characterized by a reduced biodiversity of commensal microbiota. Administration of conventional probiotic strains is a commonly applied approach in the management of the disease to modify the gut microbiome, improve intestinal barrier integrity and function, and maintain a balanced immune response. However, conventional probiotics do not always provide the expected health benefits to a patient. Their benefits vary significantly, depending on the type and stage of the disease and the strain and dose of the probiotics administered. Their mechanism of action is also strain-dependent. Recently, new candidates for potential next-generation probiotics have been discovered. This could bring to light new approaches in the restoration of microbiome homeostasis and in UC treatment in a targeted manner. The aim of this paper is to provide an updated review on the current options of probiotic-based therapies, highlight the effective conventional probiotic strains, and outline the future possibilities of next-generation probiotic and postbiotic supplementation and fecal microbiota transplantation in the management of UC
The Importance of Natural Antioxidants in Female Reproduction
Oxidative stress (OS) has an important role in female reproduction, whether it is ovulation, endometrium decidualization, menstruation, oocyte fertilization, or development andimplantation of an embryo in the uterus. The menstrual cycle is regulated by the physiological concentration of reactive forms of oxygen and nitrogen as redox signal molecules, which trigger and regulate the length of individual phases of the menstrual cycle. It has been suggested that the decline in female fertility is modulated by pathological OS. The pathological excess of OS compared to antioxidants triggers many disorders of female reproduction which could lead to gynecological diseases and to infertility. Therefore, antioxidants are crucial for proper female reproductive function. They play a part in the metabolism of oocytes; in endometrium maturation via the activation of antioxidant signaling pathways Nrf2 and NF-κB; and in the hormonal regulation of vascular action. Antioxidants can directly scavenge radicals and act as a cofactor of highly valuable enzymes of cell differentiation and development, or enhance the activity of antioxidant enzymes. Compensation for low levels of antioxidants through their supplementation can improve fertility. This review considers the role of selected vitamins, flavonoids, peptides, and trace elements with antioxidant effects in female reproduction mechanisms
The Effects of Two Lactobacillus plantarum
The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet.
Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat.
These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance
Ability of Lactobacillus plantarum LS/07 to modify intestinal enzymes activity in chronic diseases prevention
The ability of probiotic strain Lactobacillus plantarum LS/07 to modify the activity of intestinal bacterial enzymes - β-glucuronidase (β-GLUCUR), β-galactosidase (β-GAL), and β-glucosidase (β-GLU) in prevention of chronic diseases - cancer, atherosclerosis and dysbiosis was investigated. The male Sprague-Dawley rats were randomly divided into 12 experimental groups: controls groups - C (control), AT (atherosclerotic), CC (carcinogenic), dysbiotic groups - each group in combination with antibiotics (ATB), probiotics groups - in combinatioan with probiotic (PRO) alone, and each group with combination of antibiotic and probiotic (ATB+PRO). In the control group the β-glucuronidase activity did not change throughout the experiment. High fat diet in atherosclerotic group significantly increased the activity of β-glucuronidase (P<0.001) and β-glucosidase (P<0.01). Azoxymethane application in carcinogenic group significantly increased β-glucuronidase (P<0.01), but reduced β-glucosidase (P<0.01) activity. Daily application of probiotics alone and in combination with antibiotic increased β-galactosidase, of β-glucosidase, and decreased β-glucuronidase activity. In control antibiotic group we observed significant increase in β-glucuronidase (P<0.05) and decreased β-glucosidase (P<0.01) activity which can be caused by the change of microflora in favor of coliform bacteria. These findings indicate the positive effects of probiotic Lactobacillus plantarum LS/07 and suggest its use in disease prevention in human medicine and some animal species