18 research outputs found

    Ligand Migration and Cavities within Scapharca Dimeric HbI: Studies by Time-Resolved Crystallo- graphy, Xe Binding, and Computational Analysis

    Get PDF
    SummaryAs in many other hemoglobins, no direct route for migration of ligands between solvent and active site is evident from crystal structures of Scapharca inaequivalvis dimeric HbI. Xenon (Xe) and organic halide binding experiments, along with computational analysis presented here, reveal protein cavities as potential ligand migration routes. Time-resolved crystallographic experiments show that photodissociated carbon monoxide (CO) docks within 5 ns at the distal pocket B site and at more remote Xe4 and Xe2 cavities. CO rebinding is not affected by the presence of dichloroethane within the major Xe4 protein cavity, demonstrating that this cavity is not on the major exit pathway. The crystal lattice has a substantial influence on ligand migration, suggesting that significant conformational rearrangements may be required for ligand exit. Taken together, these results are consistent with a distal histidine gate as one important ligand entry and exit route, despite its participation in the dimeric interface

    BioCARS: Synchrotron facility for probing structural dynamics of biological macromolecules

    No full text
    A major goal in biomedical science is to move beyond static images of proteins and other biological macromolecules to the internal dynamics underlying their function. This level of study is necessary to understand how these molecules work and to engineer new functions and modulators of function. Stemming from a visionary commitment to this problem by Keith Moffat decades ago, a community of structural biologists has now enabled a set of x-ray scattering technologies for observing intramolecular dynamics in biological macromolecules at atomic resolution and over the broad range of timescales over which motions are functionally relevant. Many of these techniques are provided by BioCARS, a cutting-edge synchrotron radiation facility built under Moffat leadership and located at the Advanced Photon Source at Argonne National Laboratory. BioCARS enables experimental studies of molecular dynamics with time resolutions spanning from 100 ps to seconds and provides both time-resolved x-ray crystallography and small- and wide-angle x-ray scattering. Structural changes can be initiated by several methods—UV/Vis pumping with tunable picosecond and nanosecond laser pulses, substrate diffusion, and global perturbations, such as electric field and temperature jumps. Studies of dynamics typically involve subtle perturbations to molecular structures, requiring specialized computational techniques for data processing and interpretation. In this review, we present the challenges in experimental macromolecular dynamics and describe the current state of experimental capabilities at this facility. As Moffat imagined years ago, BioCARS is now positioned to catalyze the scientific community to make fundamental advances in understanding proteins and other complex biological macromolecules

    The photocycle movie of photoactive yellow protein from nanoseconds to seconds

    No full text
    The structural changes associated with the photocycle of photoactive yellow protein (PYP) was investigated. Ultrafast time-resolved x-ray crystallography techniques were used for the structural analysis. A set of time-dependant crystallographic measurements at ambient temperature was obtained during the photocycle of PYP over 9 decades in time, from 1 ns to 5 s after initiation of the photocycle by illumination of the crystal with a 7-ns laser pulse. The step critical to entry into the photocycle was identified as flipping of the carbonyl group of the 4-hydroxycinnamic acid chromophore into an adjacent, hydrophobic environment
    corecore