6 research outputs found

    Preliminary approach to bio-based surface healing of structural repair cement mortars

    Get PDF
    Mitigating the maintenance and repair costs of structures and infrastructures is a major problem in all countries. The aim of this research work is to analyse the performance of surface healing technique for crack control of cement-based mortars for structural repair in maritime environments. Microbiologically induced calcite precipitation (MICP) with ureolytic bacteria Sporosarcina pasteuri DSM 33 was introduced for crack-healing. Only main cracks were filled with the bioagent (bacterial cells and nutrients) for cost-saving purpose. It is intended to analyse the effectiveness of this technique for structural application in areas exposed to cyclic moisture changes. Hygric properties and their relation to durability increase were analysed through moisture buffering tests, capillary, porosity, compressive strength, SEM and microscopy analysis before and after bio-agent application to evaluate the evolution of the precipitation. For the first time, moisture buffering value (MBV) was used to evaluate the performance of the self-healed mortar and time needed for bacterial precipitation. The treated material can be classified as good in terms of MBV, and there was a general increasing trend of moisture buffering behaviour in self-healed samples. SEM analysis showed distinctive differences between the treated and non-treated cracks. The results show that bio-agent had remarkable effect on compressive strength recovery (over 87% of original value) after 21 days of healing and positively affected the initial stage of capillary absorption

    Comparison of Microbially Induced Healing Solutions for Crack Repairs of Cement-Based Infrastructure

    Get PDF
    Reinforced concrete crack repair and maintenance costs are around 84% to 125% higher than construction costs, which emphasises the need to increase the infrastructure service life. Prolongation of the designed service life of concrete structures can have significant economic and ecological benefits by minimising the maintenance actions and related increase of carbon and energy expenditure, making it more sustainable. Different mechanisms such as diffusion, permeation and capillary action are responsible for the transport of fluids inside the concrete, which can impact on the structure service life. This paper presents data on microbially induced repair and self-healing solutions for cementitious materials available in the contemporary literature and compares results of compressive strength test and capillary water absorption test, which are relevant to their sealing and mechanical characteristics. The results of the repair and self-healing solutions (relative to unassisted recovery processes) were “normalized.” Externally applied bacteria-based solutions can improve the compressive strength of cementitious materials from 13% to 27%. The internal solution based solely on bacterial suspension had 19% improvement efficacy. Results also show that “hybrid” solutions, based on both bio-based and non-bio-based components, whether externally or internally applied, have the potential for best repair results, synergistically combining their benefits

    The bear in Eurasian plant names: Motivations and models

    Get PDF
    Ethnolinguistic studies are important for understanding an ethnic group's ideas on the world, expressed in its language. Comparing corresponding aspects of such knowledge might help clarify problems of origin for certain concepts and words, e.g. whether they form common heritage, have an independent origin, are borrowings, or calques. The current study was conducted on the material in Slavonic, Baltic, Germanic, Romance, Finno-Ugrian, Turkic and Albanian languages. The bear was chosen as being a large, dangerous animal, important in traditional culture, whose name is widely reflected in folk plant names. The phytonyms for comparison were mostly obtained from dictionaries and other publications, and supplemented with data from databases, the co-authors' field data, and archival sources (dialect and folklore materials). More than 1200 phytonym use records (combinations of a local name and a meaning) for 364 plant and fungal taxa were recorded to help find out the reasoning behind bear-nomination in various languages, as well as differences and similarities between the patterns among them. Among the most common taxa with bear-related phytonyms were Arctostaphylos uva-ursi (L.) Spreng., Heracleum sphondylium L., Acanthus mollis L., and Allium ursinum L., with Latin loan translation contributing a high proportion of the phytonyms. Some plants have many and various bear-related phytonyms, while others have only one or two bear names. Features like form and/or surface generated the richest pool of names, while such features as colour seemed to provoke rather few associations with bears. The unevenness of bear phytonyms in the chosen languages was not related to the size of the language nor the present occurence of the Brown Bear in the region. However, this may, at least to certain extent, be related to the amount of the historical ethnolinguistic research done on the selected languages

    Bio-Stimulated Surface Healing of Historical and Compatible Conservation Mortars

    Get PDF
    The main focus of this research was the bio-stimulated healing of cracks in lime mortar samples (historical and newly designed). The investigation started from comprehensive characterisation of historical mortars, while in the next stage a compatible conservation mortar was designed and characterised, with special attention given to the contact zone formation between original and conservation mortars. The next step was the design of a bio-stimulating crack-sealing agent, a two-component liquid system: bacteria culture Sporosarcina pasteurii DSM 33 and nutrients. Both historical and conservation mortar samples were used in order to study their potentials for bio-stimulated surface-crack repair. The experiment lasted for 150 days, allowing the ureolytic bacteria Sporosarcina pasteurii DSM 33 to induce the precipitation of calcium carbonate into cracks and heal the damaged surface of the tested materials. The healing phenomenon was continuously monitored during a period of 150 days. Special attention was given to the evaluation of the morphology, chemical and structural characteristics of the deposits created in/on the surface cracks, monitored by optical microscopy, SEM, XRF and XRD analyses. The obtained results present valuable input for the application of the developed system in real environmental conditions as a solution for the future sustainable architectural conservation of traditionally prepared mortars

    Mass Transfer and Equilibrium Parameters on High-Pressure CO2 Extraction of Plant Essential Oils

    Full text link
    corecore