9 research outputs found

    ATMOSPHERIC PRESSURE H 2 O PLASMA TREATMENT OF POLYESTER CORD THREADS

    Get PDF
    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H2O plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H2O plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength

    The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles

    No full text
    The surface of high-performance poly(ethylene terephthalate) (PET) fibers is difficult to wet and impossible to chemically bond to different matrices. Sizing applied on the fiber surface usually improves fiber wetting, but prevents good adhesion between a matrix and the fiber surface. The present study demonstrates that the plasma treatment performed by Surface dielectric barrier discharge (Surface DBD) can lead to improved adhesion between sized PET fabric and polyurethane (PU) or poly(vinyl chloride) (PVC) coatings. Moreover, it points out that this plasma treatment can outperform current state-of-the-art adhesion-promoting treatment. Plasma treatment of sized fabric was carried out in various gaseous atmospheres, namely N2, N2 + H 2O, N2 + AAc (acrylic acid) and CO2. The adhesion was assessed by a peel test, while wettability was evaluated using strike-through time and wicking rate tests. Changes in fiber surface morphology and chemical composition were determined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Only the CO 2 plasma treatment resulted in improved adhesion. As indicated by the analyses, increased surface roughness and the incorporation of specific oxygen-containing groups were responsible for enhanced adhesion. The results presented were obtained using a plasma reactor suitable only for batch-wise treatment. As continuous treatment is expected to provide higher homogeneity and, therefore, even better adhesion, a scaled-up Surface DBD plasma system allowing continuous treatment is presented as well. © 2010 Koninklijke Brill NV, Leiden
    corecore