15 research outputs found
Iodine content in running surface waters in areas with more intensive landscape management in the Czech Republic
The aim of this study has been to make an analysis and evaluation of iodine content in running surface waters in protected landscape areas (PLA) in the Czech Republic. Water samples were taken in 2009-2011 in Jeseníky PLA (Rapotín locality) and in Šumava PLA (Arnoštov and Lipno localities), and in 2009-2010 in the upper course of the Blanice River and its tributaries in and outside of Šumava PLA. Iodine was determined by the ICP-MS method. The average iodine content was 1.55±0.33 μg dm-3 (n = 41) in Jeseníky PLA and 2.58±0.33 μg dm-3 (n = 24) and 2.29±0.84 μg dm-3 (n = 30) in Šumava PLA. The average iodine content in water samples of the Blanice River and its tributaries localized in Šumava PLA was 2.27±0.65 and 2.38±0.66 μg dm-3 and outside of Šumava PLA it equalled 2.90±0.68 and 3.26±1.51 μg dm-3. The lowest concentration of 1.43 μg dm-3 was found out in a sample from the Spálenecký brook (Šumava PLA), and the highest one, 7.63 μg dm-3, was determined in a sample from the Živný brook, which flows below the town Prachatice. Higher concentrations were measured in the summer season: 3.05±0.35 (Blanice) and 3.63±1.24 μg dm-3 (tributaries), while lower ones were determined in the spring season: 1.48±0.30 (Blanice) and 2.37±1.12 μg dm-3 (tributaries). The results confirm the low iodine content in the environment of Jeseníky and Šumava Mts., and the self-purification capacity of the Blanice River even when it is stressed with anthropogenic iodine
Dynamic genetic linkage of intermediate blood pressure phenotypes during postural adaptations in a founder population
Blood pressure (BP) is a dynamic phenotype that varies rapidly to adjust to changing environmental conditions. Standing upright is a recent evolutionary trait, and genetic factors that influence postural adaptations may contribute to BP variability. We studied the effect of posture on the genetics of BP and intermediate BP phenotypes. We included 384 sib-pairs in 64 sib-ships from families ascertained by early-onset hypertension and dyslipidemia. Blood pressure, three hemodynamic and seven neuroendocrine intermediate BP phenotypes were measured with subjects lying supine and standing upright. The effect of posture on estimates of heritability and genetic covariance was investigated in full pedigrees. Linkage was conducted on 196 candidate genes by sib-pair analyses, and empirical estimates of significance were obtained. A permutation algorithm was implemented to study the postural effect on linkage. ADRA1A, APO, CAST, CORIN, CRHR1, EDNRB, FGF2, GC, GJA1, KCNB2, MMP3, NPY, NR3C2, PLN, TGFBR2, TNFRSF6, and TRHR showed evidence of linkage with any phenotype in the supine position and not upon standing, whereas AKR1B1, CD36, EDNRA, F5, MMP9, PKD2, PON1, PPARG, PPARGC1A, PRKCA, and RET were specifically linked to standing phenotypes. Genetic profiling was undertaken to show genetic interactions among intermediate BP phenotypes and genes specific to each posture. When investigators perform genetic studies exclusively on a single posture, important genetic components of BP are missed. Supine and standing BPs have distinct genetic signatures. Standardized maneuvers influence the results of genetic investigations into BP, thus reflecting its dynamic regulation
Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat
The spontaneously hypertensive rat (SHR), one of the most widely used model of essential hypertension, is predisposed to left ventricular hypertrophy, myocardial fibrosis, and metabolic disturbances. Recently, quantitative trait loci influencing blood pressure, left ventricular mass, and heart interstitial fibrosis were genetically isolated within a minimal congenic subline that contains only 7 genes, including mutant Plzf (promyelocytic leukemia zinc finger) candidate gene. To identify Plzf as a quantitative trait gene, we targeted Plzf in the SHR using the transcription activator-like effector nuclease technique and obtained SHR line harboring targeted Plzf gene with a premature stop codon. Because the Plzf targeted allele is semilethal, morphologically normal heterozygous rats were used for metabolic and hemodynamic analyses. SHR-Plzf(+/-) heterozygotes versus SHR wild-type controls exhibited reduced body weight and relative weight of epididymal fat, lower serum and liver triglycerides and cholesterol, and better glucose tolerance. In addition, SHR-Plzf(+/-) rats exhibited significantly increased sensitivity of adipose and muscle tissue to insulin action when compared with wild-type controls. Blood pressure was comparable in SHR versus SHR-Plzf(+/-) ; however, there was significant amelioration of cardiomyocyte hypertrophy and cardiac fibrosis in SHR-Plzf(+/-) rats. Gene expression profiles in the liver and expression of selected genes in the heart revealed differentially expressed genes that play a role in metabolic pathways, PPAR (peroxisome proliferator-activated receptor) signaling, and cell cycle regulation. These results provide evidence for an important role of Plzf in regulation of metabolic and cardiac traits in the rat and suggest a cross talk between cell cycle regulators, metabolism, cardiac hypertrophy, and fibrosis
Quantitative Founder-Effect Analysis of French Canadian Families Identifies Specific Loci Contributing to Metabolic Phenotypes of Hypertension
The Saguenay–Lac St-Jean population of Quebec is relatively isolated and has genealogical records dating to the 17th-century French founders. In 120 extended families with at least one sib pair affected with early-onset hypertension and/or dyslipidemia, we analyzed the genetic determinants of hypertension and related cardiovascular and metabolic conditions. Variance-components linkage analysis revealed 46 loci after 100,000 permutations. The most prominent clusters of overlapping quantitative-trait loci were on chromosomes 1 and 3, a finding supported by principal-components and bivariate analyses. These genetic determinants were further tested by classifying families by use of LOD score density analysis for each measured phenotype at every 5 cM. Our study showed the founder effect over several generations and classes of living individuals. This quantitative genealogical approach supports the notion of the ancestral causality of traits uniquely present and inherited in distinct family classes. With the founder effect, traits determined within population subsets are measurably and quantitatively transmitted through generational lineage, with a precise component contributing to phenotypic variance. These methods should accelerate the uncovering of causal haplotypes in complex diseases such as hypertension and metabolic syndrome