9 research outputs found

    Solid-State Characterization and Biological Activity of Betulonic Acid Derivatives

    Get PDF
    Betulonic acid belongs to the pentacyclic triterpenic derivative class and can be obtained through the selective oxidation of betulin. In this study we set obtaining several functionalized derivatives of this compound by its condensation with several amino compounds such as aminoguanidine, hydroxylamine, n-butylamine and thiosemicarbazide as our goal. The functionalization of the parent compound led to several molecules with antiproliferative potential, the most promising being 3–2-carbamothioylhydrazonolup-20(29)-en-28-oic acid

    Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation

    No full text
    A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins’ levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines

    A Comparative Study of Melissa officinalis

    No full text
    Melissa officinalis L. has attracted an increased interest in recent years due to its multiple pharmacological effects. This study aimed to compare two M. officinalis ethanolic extracts, obtained from leaves and stems, with regard to their antioxidant activity, total phenolic content, and cytotoxic effects. M. officinalis ethanolic extracts showed a very good antioxidant activity in the DPPH test, correlated with the content in total phenols: higher in the case of M. officinalis from leaves extract (32.76 mg GAE/g) and lower for M. officinalis from stems extract (8.4 mg GAE/g). The lemon balm extracts exerted a cytotoxic effect on breast cancer cells (MDA-MB-231) even at low concentrations (100 μg/mL), whereas, in the case of healthy HaCat cells, M. officinalis leaves extract only displayed cytotoxicity at much higher concentrations (500 and 1000 μg/mL) and M. officinalis stems extracts were highly cytotoxic (starting at 100 μg/mL). In addition, the extracts exerted inhibitory effects on cell migration and proliferation. These results provide information that confirms the high potential of M. officinalis as a source of chemopreventive agents. Moreover, these data can be considered a solid background for further in vivo studies involving mice bearing breast tumors

    Genistein in 1:1 inclusion complexes with ramified cyclodextrins: theoretical, physicochemical and biological evaluation

    No full text
    Genistein is one of the most studied phytocompound in the class of isoflavones, presenting a notable estrogenic activity and in vitro and/or in vivo benefits in different types of cancer such as those of the bladder, kidney, lung, pancreatic, skin and endometrial cancer. A big inconvenience for drug development is low water solubility, which can be solved by using hydrophilic cyclodextrins. The aim of this study is to theoretically analyze, based on the interaction energy, the possibility of a complex formation between genistein (Gen) and three different ramified cyclodextrins (CD), using a 1:1 molar ratio Gen:CD. Theoretical data were correlated with a screening of both in vitro and in vivo activity. Proliferation of different human cancer cell lines, antimicrobial activity and angiogenesis behavior was analyzed in order to see if complexation has a beneficial effect for any of the above mentioned activities and if so, which of the three CDs is the most suitable for the incorporation of genistein, and which may lead to future improved pharmaceutical formulations. Results showed antiproliferative activity with different IC50 values for all tested cell lines, remarkable antimicrobial activity on Bacillus subtilis and antiangiogenic activity as revealed by CAM assay. Differences regarding the intensity of the activity for pure and the three Gen complexes were noticed as explained in the text. The data represent a proof that the three CDs can be used for furtherer research towards practical use in the pharmaceutical and medical field

    Betulinic Acid in Complex with a Gamma-Cyclodextrin Derivative Decreases Proliferation and in Vivo Tumor Development of Non-Metastatic and Metastatic B164A5 Cells

    No full text
    Betulinic acid, a very promising anti-melanoma agent, has very low water solubility that causes low bioavailability. To overcome this inconvenience, a highly water-soluble cyclodextrin was used (octakis-[6-deoxy-6-(2-sulfanyl ethanesulfonic acid)]-gamma-cyclodextrin). The complex was physico-chemically analyzed using differential scanning calorimetry (DSC), X-ray and scanning electron microscopy (SEM) methods and then in vitro tested for its antiproliferative activity by the MTT assay and by cell cycle analysis. Finally, the complex was tested in vivo using an animal model of murine melanoma developed in C57BL/6J mice, where it caused a reduction in tumor volume and weight. The study revealed the beneficial influence of betulinic acid inclusion into the cyclodextrin in terms of antiproliferative activity and in vivo tumor development

    Correlations on Phenolic Screening Related to In Vitro and In Ovo Assessment of Ocimum basilicum L. Hydro-Alcoholic Extracts Used as Skin Active Ingredient

    No full text
    The current study was aimed to evaluate the phenolic composition parameters of two hydro-alcoholic extracts of Ocimum basilicum L. (OB) obtained from the aerial part (without leaves) and leaves, in order to determine their contribution to the antioxidant activity (AOA). Both hydro-alcoholic extracts have proven to be rich in polyphenolic compounds, flavonoids, flavonols and tannins. Therefore, the leaves’ extracts reveal an inhibition percentage of 89%, almost comparable with the standard reference (95%). To complete the toxicological profile, the study also assessed the potential cytotoxicity of basil hydro-alcoholic extracts on immortalized human keratinocytes (HaCaT), skin human fibroblasts (1BR3), mice epidermis (JB6Cl41-5a) and primary human melanocytes (HEMa) cells, correlated to A375 antitumor in vitro activity. The extracts did not induce significant cytotoxic effect on any of the selected normal cell lines but showed relevant activity on A375 cells. Considering the low values obtained regarding the irritative effects in the chorionallantoic membrane of the egg on blood vessels, we can emphasize that both extracts can be considered as biocompatible ingredients. Regarding the potential activity of hydro-alcoholic extracts on human skin, the decrease of erythema values after the application of extracts was a relevant observation which indicates the anti-inflammatory potential of Ocimum basilicum L
    corecore