68 research outputs found

    Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC

    Full text link
    We introduce Tempered Geodesic Markov Chain Monte Carlo (TG-MCMC) algorithm for initializing pose graph optimization problems, arising in various scenarios such as SFM (structure from motion) or SLAM (simultaneous localization and mapping). TG-MCMC is first of its kind as it unites asymptotically global non-convex optimization on the spherical manifold of quaternions with posterior sampling, in order to provide both reliable initial poses and uncertainty estimates that are informative about the quality of individual solutions. We devise rigorous theoretical convergence guarantees for our method and extensively evaluate it on synthetic and real benchmark datasets. Besides its elegance in formulation and theory, we show that our method is robust to missing data, noise and the estimated uncertainties capture intuitive properties of the data.Comment: Published at NeurIPS 2018, 25 pages with supplement

    Supervised Symbolic Music Style Translation Using Synthetic Data

    Get PDF
    International audienceResearch on style transfer and domain translation has clearly demonstrated the ability of deep learning-based algorithms to manipulate images in terms of artistic style. More recently, several attempts have been made to extend such approaches to music (both symbolic and audio) in order to enable transforming musical style in a similar manner. In this study, we focus on symbolic music with the goal of altering the 'style' of a piece while keeping its original 'content'. As opposed to the current methods, which are inherently restricted to be unsupervised due to the lack of 'aligned' data (i.e. the same musical piece played in multiple styles), we develop the first fully supervised algorithm for this task. At the core of our approach lies a synthetic data generation scheme which allows us to produce virtually unlimited amounts of aligned data, and hence avoid the above issue. In view of this data generation scheme, we propose an encoder-decoder model for translating symbolic music accompaniments between a number of different styles. Our experiments show that our models, although trained entirely on synthetic data, are capable of producing musically meaningful accompaniments even for real (non-synthetic) MIDI recordings

    Generalization Bounds with Data-dependent Fractal Dimensions

    Full text link
    Providing generalization guarantees for modern neural networks has been a crucial task in statistical learning. Recently, several studies have attempted to analyze the generalization error in such settings by using tools from fractal geometry. While these works have successfully introduced new mathematical tools to apprehend generalization, they heavily rely on a Lipschitz continuity assumption, which in general does not hold for neural networks and might make the bounds vacuous. In this work, we address this issue and prove fractal geometry-based generalization bounds without requiring any Lipschitz assumption. To achieve this goal, we build up on a classical covering argument in learning theory and introduce a data-dependent fractal dimension. Despite introducing a significant amount of technical complications, this new notion lets us control the generalization error (over either fixed or random hypothesis spaces) along with certain mutual information (MI) terms. To provide a clearer interpretation to the newly introduced MI terms, as a next step, we introduce a notion of "geometric stability" and link our bounds to the prior art. Finally, we make a rigorous connection between the proposed data-dependent dimension and topological data analysis tools, which then enables us to compute the dimension in a numerically efficient way. We support our theory with experiments conducted on various settings

    The Heavy-Tail Phenomenon in SGD

    Full text link
    In recent years, various notions of capacity and complexity have been proposed for characterizing the generalization properties of stochastic gradient descent (SGD) in deep learning. Some of the popular notions that correlate well with the performance on unseen data are (i) the `flatness' of the local minimum found by SGD, which is related to the eigenvalues of the Hessian, (ii) the ratio of the stepsize η\eta to the batch-size bb, which essentially controls the magnitude of the stochastic gradient noise, and (iii) the `tail-index', which measures the heaviness of the tails of the network weights at convergence. In this paper, we argue that these three seemingly unrelated perspectives for generalization are deeply linked to each other. We claim that depending on the structure of the Hessian of the loss at the minimum, and the choices of the algorithm parameters η\eta and bb, the SGD iterates will converge to a \emph{heavy-tailed} stationary distribution. We rigorously prove this claim in the setting of quadratic optimization: we show that even in a simple linear regression problem with independent and identically distributed data whose distribution has finite moments of all order, the iterates can be heavy-tailed with infinite variance. We further characterize the behavior of the tails with respect to algorithm parameters, the dimension, and the curvature. We then translate our results into insights about the behavior of SGD in deep learning. We support our theory with experiments conducted on synthetic data, fully connected, and convolutional neural networks

    Generalization Bounds for Stochastic Gradient Descent via Localized ε\varepsilon-Covers

    Full text link
    In this paper, we propose a new covering technique localized for the trajectories of SGD. This localization provides an algorithm-specific complexity measured by the covering number, which can have dimension-independent cardinality in contrast to standard uniform covering arguments that result in exponential dimension dependency. Based on this localized construction, we show that if the objective function is a finite perturbation of a piecewise strongly convex and smooth function with PP pieces, i.e. non-convex and non-smooth in general, the generalization error can be upper bounded by O((lognlog(nP))/n)O(\sqrt{(\log n\log(nP))/n}), where nn is the number of data samples. In particular, this rate is independent of dimension and does not require early stopping and decaying step size. Finally, we employ these results in various contexts and derive generalization bounds for multi-index linear models, multi-class support vector machines, and KK-means clustering for both hard and soft label setups, improving the known state-of-the-art rates

    Learning via Wasserstein-Based High Probability Generalisation Bounds

    Full text link
    Minimising upper bounds on the population risk or the generalisation gap has been widely used in structural risk minimisation (SRM) -- this is in particular at the core of PAC-Bayesian learning. Despite its successes and unfailing surge of interest in recent years, a limitation of the PAC-Bayesian framework is that most bounds involve a Kullback-Leibler (KL) divergence term (or its variations), which might exhibit erratic behavior and fail to capture the underlying geometric structure of the learning problem -- hence restricting its use in practical applications. As a remedy, recent studies have attempted to replace the KL divergence in the PAC-Bayesian bounds with the Wasserstein distance. Even though these bounds alleviated the aforementioned issues to a certain extent, they either hold in expectation, are for bounded losses, or are nontrivial to minimize in an SRM framework. In this work, we contribute to this line of research and prove novel Wasserstein distance-based PAC-Bayesian generalisation bounds for both batch learning with independent and identically distributed (i.i.d.) data, and online learning with potentially non-i.i.d. data. Contrary to previous art, our bounds are stronger in the sense that (i) they hold with high probability, (ii) they apply to unbounded (potentially heavy-tailed) losses, and (iii) they lead to optimizable training objectives that can be used in SRM. As a result we derive novel Wasserstein-based PAC-Bayesian learning algorithms and we illustrate their empirical advantage on a variety of experiments.Comment: Accepted to NeurIPS 202
    corecore