2 research outputs found

    AzTEC 1.1 mm observations of high-z protocluster environments : SMG overdensities and misalignment between AGN jets and SMG distribution

    Get PDF
    We present observations at 1.1 mm towards 16 powerful radio galaxies and a radio-quiet quasar at 0.5 > z > 6.3 acquired with the AzTEC camera mounted at the James Clerk Maxwell Telescope and Atacama Submillimeter Telescope Experiment to study the spatial distribution of submillimetre galaxies (SMGs) towards possible protocluster regions. The survey covers a total area of 1.01 sq deg with rms depths of 0.52-1.44 mJy and detects 728 sources above 3σ. We find overdensities of a factor of ~2 in the source counts of three individual fields (4C+23.56, PKS1138-262, and MRC0355-037) over areas of ~200 sq deg. When combining all fields, the source-count analysis finds an overdensity that reaches a factor ≳ 3 at S 1.1mm = 4mJy covering a 1.5-arcmin-radius area centred on the active galactic nucleus. The large size of our maps allows us to establish that beyond a radius of 1.5 arcmin, the radial surface density of SMGs falls to that of a blank field. In addition, we find a trend for SMGs to align closely to a perpendicular direction with respect to the radio jets of the powerful central radio galaxies (73 -14 +13 deg). This misalignment is found over projected comoving scales of 4-20 Mpc, departs from perfect alignment (0 deg) by ~5σ, and apparently has no dependence on SMG luminosity. Under the assumption that the AzTEC sources are at the redshift of the central radio galaxy, the misalignment reported here can be interpreted as SMGs preferentially inhabiting mass-dominant filaments funnelling material towards the protoclusters, which are also the parent structures of the radio galaxies.Peer reviewe

    Early science with the Large Millimetre Telescope: Deep LMT/AzTEC millimetre observations of ϵ Eridani and its surroundings

    Get PDF
    ϵ Eridani is a nearby, young Sun-like star that hosts a ring of cool debris analogous to the Solar system's Edgeworth-Kuiper belt. Early observations at (sub-)mm wavelengths gave tentative evidence of the presence of inhomogeneities in the ring, which have been ascribed to the effect of a putative low eccentricity planet, orbiting close to the ring. The existence of these structures has been recently challenged by high-resolution interferometric millimetre observations. Here, we present the deepest single-dish image of ϵ Eridani at millimetre wavelengths, obtained with the Large Millimetre Telescope Alfonso Serrano (LMT). The main goal of these LMT observations is to confirm (or refute) the presence of non-axisymmetric structure in the disc. The dusty ring is detected for the first time along its full projected elliptical shape. The radial extent of the ring is not spatially resolved and shows no evidence, to within the uncertainties, of dust density enhancements. Additional features of the 1.1 mm map are: (i) the presence of significant flux in the gap between the ring and the star, probably providing the first exo-solar evidence of Poynting-Robertson drag, (ii) an unambiguous detection of emission at the stellar positionwith a flux significantly above that expected from ϵ Eridani's photosphere, and (iii) the identification of numerous unresolved sources which could correspond to background dusty star-forming galaxies.This work would have not been possible without the long-term financial support from the Mexican Science and Technology Funding Agency, CONACyT (Consejo Nacional de Ciencia y Tecnología) during the construction and operational phase of the Large Millimetre Telescope Alfonso Serrano, as well as support from the US National Science Foundation via the University Radio Observatory program, the Instituto Nacional de Astrofísica, Optica y Electrónica (INAOE) and the University of Massachusetts, Amherst (UMass). MC, EB, FCSM, MO and RLV work was supported by CONACyT research grants SEP-2009-134985 and SEP-2011-169554. GMK is supported by the Royal Society as a Royal Society University Research Fellow. CE is partly supported by Spanish grant AYA2014-55840-P. JPM is supported by a UNSW Vice Chancellor's Postdoctoral Fellowship. SL acknowledges support from CONACyT through grant 238631
    corecore