12 research outputs found

    Effect of In Ovo Administration of a Multi-Strain Probiotic and Zinc Glycine Chelate on Antioxidant Capacity and Selected Immune Parameters in Newly Hatched Chicks

    No full text
    The aim of this study was to determine the effect of in ovo co-supplementation of chicken embryos with a multi-strain probiotic containing effective microorganisms and zinc glycine chelate on total antioxidant capacity; concentrations of sulfhydryl groups, bityrosine bridges, formylkynurenines, hydroperoxides, proteins, corticosterone, pro- and anti-inflammatory cytokines and heat shock proteins; and the activity of catalase and superoxide dismutase in the serum, yolk sac and tissues of broiler chickens at 12 h and at 7 days after hatching. The results indicate high SOD activity in the small and large intestines of chicks at 12 h post-hatch in the groups receiving the multi-strain probiotic and in the small intestine and yolk sac of birds receiving the multi-strain probiotic and Zn-Gly chelate. High concentrations of TNF-α and IFN-γ in the yolk sac and serum after in ovo administration of Zn-Gly chelate were observed 12 h after hatching. The use of a probiotic and a probiotic with Zn-Gly chelate increased the total antioxidant capacity in the tissues of chickens. It can be concluded that in ovo administration of a multi-strain probiotic and Zn-Gly chelate can maintain the oxidant/antioxidant balance in chickens and increase the defense capacity against oxidative stress

    Biofilm-Formation Ability and the Presence of Adhesion Genes in Coagulase-Negative Staphylococci Isolates from Chicken Broilers

    No full text
    The aim of the study was to analyze the biofilm-production capacity of 87 coagulase-negative Staphylococcus strains (CoNS) isolated from broiler chickens and to determine the occurrence of biofilm-associated genes. The biofilm production capacity of staphylococci was assessed using the microtiter plate method (MTP), and the frequency of genes was determined by PCR. The ability to form a biofilm in vitro was shown in 79.3% of examined strains. Strong biofilm capacity was demonstrated in 26.4% of strains, moderate capacity in 25.3%, weak capacity in 27.6%, and a complete lack of biofilm production capacity in 20.7% of strains. The icaAB gene responsible for the production of extracellular polysaccharide adhesins was detected in 6.9% of strains. The other four genes, i.e., bap (encoding biofilm-associated protein), atlE (encoding cell surface protein exhibiting vitronectin-binding activity), fbe (encoding fibrinogen-binding protein), and eno (encoding laminin-binding protein) were detected in 5.7%, 19.5%, 8%, and 70.1% of strains, respectively. Demonstration of genes that play a role in bacterial biofilm formation may serve as a genetic basis to distinguish between symbiotic and potentially invasive coagulase-negative staphylococcal strains

    Detection of antibiotic resistance and classical enterotoxin genes in coagulase -negative staphylococci isolated from poultry in Poland

    No full text
    Introduction: The study sought to characterise antimicrobial resistance among coagulase-negative Staphylococcus (CNS) species recovered from broiler chickens and turkeys in Poland including the presence of 12 antimicrobial resistance genes and five classical genes of staphylococcal enterotoxins. Material and Methods: A panel of 11 antimicrobial disks evaluated the phenotypic sensitivity of the tested strains to antibiotics. Five multiplex PCR assays were performed using primer pairs for specific detection of antibiotic resistance genes and staphylococcal enterotoxin A to E genes. Results: Selected antimicrobial agent susceptibility testing revealed 100% of such in in vitro conditions to cefoxitin among strains of Staphylococcus sciuri and S. chromogenes. The blaZ (for ß-lactam) and mecA (for methicillin resistance) genes were in 58.3% and 27.5% of strains, respectively. Among genes resistant to tetracyclines, tetK was most frequent. Fewer (CNS) strains showed genes resistant to macrolides, lincosamides, and florfenicol/chloramphenicol. Multiplex PCR for classical enterotoxins (A-E) detected the see gene in two S. hominis strains, while the seb gene producing enterotoxin B was found in one strain of S. epidermidis. Conclusion: CNS strains of Staphylococcus isolated from poultry were either phenotypically or genotypically multidrug resistant. Testing for the presence of the five classical enterotoxin genes showed that CNS strains, as in the case of S. aureus strains, can be a source of food intoxications

    Proteome and Peptidome Changes and Zn Concentration in Chicken after In Ovo Stimulation with a Multi-Strain Probiotic and Zn-Gly Chelate: Preliminary Research

    No full text
    The aim of the study was to determine differences in the proteome and peptidome and zinc concentrations in the serum and tissues of chickens supplemented with a multi-strain probiotic and/or zinc glycine chelate in ovo. A total of 1400 fertilized broiler eggs (Ross × Ross 708) were divided into four groups: a control and experimental groups injected with a multi-strain probiotic, with zinc glycine chelate, and with the multi-strain probiotic and zinc glycine chelate. The proteome and peptidome were analyzed using SDS-PAGE and MALDI—TOF MS, and the zinc concentration was determined by flame atomic absorption spectrometry. We showed that in ovo supplementation with zinc glycine chelate increased the Zn concentration in the serum and yolk sac at 12 h post-hatch. The results of SDS-PAGE and western blot confirmed the presence of Cu/Zn SOD in the liver and in the small and large intestines at 12 h and at 7 days after hatching in all groups. Analysis of the MALDI—TOF MS spectra of chicken tissues showed in all experimental groups the expression of proteins and peptides that regulate immune response, metabolic processes, growth, development, and reproduction

    Influence of Effective Microorganisms and Clinoptilolite on Gut Barrier Function, Intestinal Health and Performance of Broiler Chickens during Induced <i>Eimeria tenella</i> Infection

    No full text
    The prohibition of certain coccidiostats in poultry has created a need to seek an alternative to control Eimeria infection. The aim of this study was to evaluate the effects of effective microorganisms (EM) in a multi-strain probiotic (Bokashi®), with clinoptilolite as a feed supplement on the mRNA expression of tight junction proteins and redox enzymes in the caecal tissue of chickens infected with E. tenella. The integrity of the intestinal barrier was tested by determining the concentration of fluorescein isothiocyanate dextran (FITC-d) in the chicken’s serum. A total of 600 1-day-old Ross 308 male chickens received diets with a 0.5% or 0.8% concentration of the probiotic together with clinoptilolite. The experiment used 5 treatment groups, and a control group, each with 5 replicates with 20 birds. The results indicate that the use of the 8 kg/t of feed multi-strain probiotic together with clinoptilolite in the diet of poultry caused a significant reduction in the number of E. tenella oocysts in the faeces and caecum and significantly improved the growth rate of chicken broilers infected with E. tenella. In addition, the probiotic and clinoptilolite enhanced antioxidant processes in the caecal mucosa and reduced oxidative stress induced by E. tenella infection

    The Effect of Glutamine as Feed Additive on Selected Parameters of the Nonspecific Immune Response in Pigs

    No full text
    The use of feed additives containing glutamine can influence the growth and development of piglets during the weaning period. The aim of this study was to determine the effect of feed supplementation with 0.5% L-glutamine on selected parameters of the nonspecific immune response of pigs. The research was carried out on 60 pigs (Polish Large White × Polish Landrace), from 28 days of age to slaughter. The obtained results showed an increased percentage of phagocytic cells (monocytes and granulocytes) and oxygen blast cells in pigs between 28 and 70 days of age, proving that non-specific immune mechanisms were stimulated, which contributed to the improvement of the processes of antigen elimination from the body. The increase in the percentage of cells expressing SWC3, CD11b/CD18+, CD14+ and CD14+CD16+ molecules on granulocytes and monocytes during this period resulted in the enhancement of the host defense mechanisms by stimulating phagocytosis and enhancing the mechanisms of a non-specific immune response. The high concentration of TNF-α and IL-1β as well as Il-10 in the experimental group indicates the cellular phenotype of the Th1-type response, and the maintenance of the immune balance between the pro-inflammatory and anti-inflammatory responses and ensuring the homeostasis of the organism

    Liver Antioxidant Capacity and Steatosis in Laying Hens Exposed to Various Quantities of Lupin (<i>Lupinus angustifolius</i>) Seeds in the Diet

    No full text
    Despite the many beneficial properties of legume plants, their use in diets for poultry is limited by the presence of antinutritional factors. The aim of the study was to determine the activity of DT-diaphorase, ethoxycoumarin O-deethylase, and catalase, and the concentration of malondialdehyde in liver tissue, as well as the activity of SOD and CAT in the serum of Hy-line Brown hens fed a diet supplemented with various doses of Lupinus angustifolius seeds. The results indicate that the use of large amounts of lupin in the diet resulted in an increase in MDA concentration in the liver and the lipid vacuolization of hepatocytes. A significant increase in DTD activity was observed in chickens receiving 15% lupin. Regardless of lupin dose, no increase in SOD activity was observed in chicken serum after 33 days of the experiment. From the 66th day of the experiment, an increase in catalase activity in the serum of laying hens was observed, while low activity of this enzyme was found in the liver. It can be concluded that the short-term use of lupin in the diet of laying hens does not affect the activity of antioxidant enzymes and, therefore, does not affect the oxidative–antioxidant balance of their body
    corecore