4 research outputs found

    Genetic diversity of hemagglutinin gene of A(H1N1)pdm09 influenza strains isolated in Taiwan and its potential impact on HA-neutralizing epitope interaction.

    Get PDF
    Pandemic influenza A(H1N1)pdm09 virus is a global health threat and between 2009-2011 it became the predominant influenza virus subtype circulating in the world. The research describes the MSSCP (Multitemperature Single Strand Conformation Polymorphism) analysis of the hemagglutinin (HA) region encompassing major neutralizing epitope in pandemic influenza isolates from Taiwan. Several genetically distinct changes appeared in isolates obtained in 2010 and 2011. The majority of changes in HA protein did not result in significant modifications, however three modifications were localized in epitope E of H1 and one was part of the interface binding antibodies BH151 and HC45 possibly making the current vaccine less effective.-Taking into account the possibility of the emergence of influenza A with antibody evading potential, the MSSCP method provides an alternative approach for detection of minor variants which escape detection by conventional Sanger sequencing

    Expression of avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) under control of the ptcB promoter in Lactococcus lactis.

    Get PDF
    Gram-positive and nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of new, safe systems of heterologous protein expression. Recombinant LAB has been shown to induce specific local and systemic immune response against selected pathogens, and could be a good alternative to classical attenuated carriers. The main goal of our study was to express the avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) in Lactococcus lactis. Results of this study were anticipated to lead to construction of lactococcal strain(s) with potential vaccine properties against the avian influenza A (H5N1) virus. Expression of the cloned H5 gene, its His-tagged variant and chIL-2 gene, under the control of the ptcB gene promoter was attested by RT-PCR on transcriptional level and Western or dot blot analysis on translational level, demonstrating that system can be an attractive solution for production of heterologous proteins. The results of the preliminary animal trial conducted in mice are a promising step toward development of a vaccine against avian bird flu using Lactococcus lactis cells as antigen carriers

    Evaluation of the Presence of ASFV in Wolf Feces Collected from Areas in Poland with ASFV Persistence

    No full text
    African swine fever (ASF), caused by a DNA virus (ASFV) belonging to genus Asfivirus of the Asfarviridae family, is one of the most threatening diseases of suids. During last few years, it has spread among populations of wild boars and pigs in countries of Eastern and Central Europe, causing huge economical losses. While local ASF occurrence is positively correlated with wild boar density, ecology of this species (social structure, movement behavior) constrains long-range disease transmission. Thus, it has been speculated that carnivores known for high daily movement and long-range dispersal ability, such as the wolf (Canis lupus), may be indirect ASFV vectors. To test this, we analyzed 62 wolf fecal samples for the presence of ASFV DNA, collected mostly in parts of Poland declared as ASF zones. This dataset included 20 samples confirmed to contain wild boar remains, 13 of which were collected near places where GPS-collared wolves fed on dead wild boars. All analyzed fecal samples were ASFV-negative. On the other hand, eight out of nine wild boar carcasses that were fed on by telemetrically studied wolves were positive. Thus, our results suggest that when wolves consume meat of ASFV-positive wild boars, the virus does not survive the passage through intestinal tract. Additionally, wolves may limit ASFV transmission by removing infectious carrion. We speculate that in areas where telemetric studies on large carnivores are performed, data from GPS collars could be used to enhance efficiency of carcass search, which is one of the main preventive measures to constrain ASF spread
    corecore